
2/28/2016

1

CSE373: Data Structures and Algorithms
Comparison Sorting II

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.  
Thank you to all who have contributed!

The comparison sorting problem
Assume we have n comparable elements in an array and we want 

to rearrange them to be in increasing order
Input:

– An array A of data records
– A key value in each data record
– A comparison function (consistent and total)

Effect:
– Reorganize the elements of A such that for any i and j,       

if i < j then A[i]  A[j]
– (Also, A must have exactly the same data it started with)
– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort
Winter 2016 2CSE 373: Data Structures & Algorithms

Sorting: The Big Picture
Surprising amount of neat stuff to say about sorting:

Winter 2016 3CSE 373: Data Structures & Algorithms

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:(n log n)

Specialized
algorithms:

O(n)
Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Divide and conquer
Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts 
– Think recursion
– Or potential parallelism

3. Combine solution of parts to produce overall solution

Winter 2016 4CSE 373: Data Structures & Algorithms

Divide-and-Conquer Sorting
Two great sorting methods are fundamentally divide-and-conquer

1. Merge sort: Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

2. Quick sort: Pick a “pivot” element 
Divide elements into less-than pivot 

and greater-than pivot
Sort the two divisions (recursively on each)
Answer is sorted-less-than then pivot then 

sorted-greater-than
Winter 2016 5CSE 373: Data Structures & Algorithms

Quick sort
• A divide-and-conquer algorithm

– Recursively chop into two pieces
– Instead of doing all the work as we merge together, 

we will do all the work as we recursively split into halves
– Unlike merge sort, does not need auxiliary space

• O(n log n) on average , but O(n2) worst-case 
• Faster than merge sort in practice?

– Often believed so
– Does fewer copies and more comparisons, so it depends on 

the relative cost of these two operations!

Winter 2016 6CSE 373: Data Structures & Algorithms



2/28/2016

2

Quicksort Overview
1. Pick a pivot element

2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C” 

Winter 2016 7CSE 373: Data Structures & Algorithms

Think in Terms of Sets

Winter 2016 8CSE 373: Data Structures & Algorithms

13 81
92

43
65

31 57
26

75 0
S select pivot value

13 8192
43 6531

5726
750S1 S2 partition S

13 4331 57260
S1

81 927565
S2

Quicksort(S1) and
Quicksort(S2)

13 4331 57260 65 81 9275S Presto!  S is sorted
[Weiss]

Example, Showing Recursion

Winter 2016 9CSE 373: Data Structures & Algorithms

2  4   3   1 8   9   6
2   1 94 6

2
1 2

1   2   3 4
1   2   3   4   5 6   8   9

Conquer
Conquer

Conquer

Divide
Divide

Divide
1 Element

8 2 9 4 5 3 1 6
5

83

1

6   8 9

Details
Have not yet explained:

• How to pick the pivot element
– Any choice is correct: data will end up sorted
– But as analysis will show, want the two partitions to be about 

equal in size

• How to implement partitioning
– In linear time
– In place

Winter 2016 10CSE 373: Data Structures & Algorithms

Pivots
• Best pivot?

– Median
– Halve each time

• Worst pivot?
– Greatest/least element
– Problem of size n - 1
– O(n2)

2  4   3   1 8   9   6
8 2 9 4 5 3 1 6

5

8  2  9 4  5  3  6
8 2 9 4 5 3 1 6

1

Winter 2016 CSE 373: Data Structures & Algorithms 11

Potential pivot rules
While sorting arr from lo to hi-1 …

• Pick arr[lo] or arr[hi-1]
– Fast, but worst-case occurs with mostly sorted input

• Pick random element in the range
– Does as well as any technique, but (pseudo)random number 

generation can be slow
– Still probably the most elegant approach

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
– Common heuristic that tends to work well

Winter 2016 12CSE 373: Data Structures & Algorithms



2/28/2016

3

Partitioning
• Conceptually simple, but hardest part to code up correctly

– After picking pivot, need to partition in linear time in place

• One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]
2. Use two fingers i and j, starting at lo+1 and hi-1
3. while (i < j)

if (arr[j] > pivot) j--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]

4. Swap pivot with arr[i] *
*skip step 4 if pivot ends up being least element

Winter 2016 13CSE 373: Data Structures & Algorithms

Example
• Step one: pick pivot as median of 3

– lo = 0, hi = 10

Winter 2016 14CSE 373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 80 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 60 1 2 3 4 5 6 7 8 9

Example
Now partition in place

Move fingers

Swap

Move fingers

Move pivot
Winter 2016 15CSE 373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than 
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

Quick sort visualization
• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Winter 2016 16CSE 373: Data Structures & Algorithms

Analysis
• Best-case: Pivot is always the median

T(0)=T(1)=1
T(n)=2T(n/2) + n -- linear-time partition
Same recurrence as merge sort: O(n log n)

• Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1
T(n) = 1T(n-1)  + n
Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)
– O(n log n), not responsible for proof (in text)

Winter 2016 17CSE 373: Data Structures & Algorithms

Cutoffs
• For small n, all that recursion tends to cost more than doing a 

quadratic sort
– Remember asymptotic complexity is for large n

• Common engineering technique: switch algorithm below a cutoff
– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:
– Could also use a cutoff for merge sort
– Cutoffs are also the norm with parallel algorithms 

• Switch to sequential algorithm
– None of this affects asymptotic complexity

Winter 2016 18CSE 373: Data Structures & Algorithms



2/28/2016

4

Cutoff pseudocode

Winter 2016 19CSE 373: Data Structures & Algorithms

void quicksort(int[] arr, int lo, int hi) {if(hi – lo < CUTOFF)insertionSort(arr,lo,hi);else…}

Notice how this cuts out the vast majority of the recursive calls 
– Think of the recursive calls to quicksort as a tree
– Trims out the bottom layers of the tree

How Fast Can We Sort?
• Heapsort & mergesort have O(n log n) worst-case running time

• Quicksort has O(n log n) average-case running time

• These bounds are all tight, actually (n log n)

• Comparison sorting in general is  (n log n)
– An amazing computer-science result: proves all the clever 

programming in the world cannot comparison-sort in linear 
time

Winter 2016 20CSE 373: Data Structures & Algorithms

The Big Picture
Surprising amount of juicy computer science: 2-3 lectures…

Winter 2016 21CSE 373: Data Structures & Algorithms

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:(n log n)

Specialized
algorithms:

O(n)
Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How???
• Change the model – assume    

more than “compare(a,b)”

Bucket Sort (a.k.a. BinSort)
• If all values to be sorted are known to be integers between 1 

and K (or any small range):
– Create an array of size K
– Put each element in its proper bucket (a.k.a. bin)
– If data is only integers, no need to store more than a count of 

how times that bucket has been used
• Output result via linear pass through array of buckets

Winter 2016 22CSE 373: Data Structures & Algorithms

count array
1 3
2 1
3 2
4 2
5 3

• Example: 
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

Visualization
• http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Winter 2016 23CSE 373: Data Structures & Algorithms

Analyzing Bucket Sort
• Overall: O(n+K)

– Linear in n, but also linear in K
– (n log n) lower bound does not apply because this is not a 

comparison sort

• Good when K is smaller (or not much larger) than n
– We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n
– Wasted space; wasted time during linear O(K) pass

• For data in addition to integer keys, use list at each bucket

Winter 2016 24CSE 373: Data Structures & Algorithms



2/28/2016

5

Bucket Sort with Data
• Most real lists aren’t just keys; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, insert in O(1) (at beginning, or keep pointer to 

last element)
count array
1
2
3
4
5

• Example: Movie ratings; 
scale 1-5;1=bad, 5=excellent
Input=

5: Casablanca
3: Harry Potter movies
5: Star Wars Original 
Trilogy
1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars
•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
•Easy to keep ‘stable’; Casablanca still before Star Wars

Winter 2016 25CSE 373: Data Structures & Algorithms

Radix sort
• Radix = “the base of a number system”

– Examples will use 10 because we are used to that
– In implementations use larger numbers

• For example, for ASCII strings, might use 128
• Idea:

– Bucket sort on one digit at a time
• Number of buckets = radix
• Starting with least significant digit
• Keeping sort stable

– Do one pass per digit
– Invariant: After k passes (digits), the last k digits are sorted

• Aside: Origins go back to the 1890 U.S. census
Winter 2016 26CSE 373: Data Structures & Algorithms

Example
Radix = 10

Input:   478
537

9
721

3
38

143
67

Winter 2016 27CSE 373: Data Structures & Algorithms

First pass: 
bucket sort by ones digit 

1
721

2 3
3

143

4 5 6 7
537
67

8
478
38

9
9

0

Order now: 721
3

143
537
67

478
38
9

Example

Winter 2016 28CSE 373: Data Structures & Algorithms

Second pass: 
stable bucket sort by tens digit 

1
721

2 3
3

143

4 5 6 7
537
67

8
478
38

9
9

0

Order now: 3
9

721
537
38

143
67

478

Radix = 10

Order was: 721
3

143
537
67

478
38
9

1 2
721

3
537
38

4
143

5 6
67

7
478

8 90
3
9

Example

Winter 2016 29CSE 373: Data Structures & Algorithms

Third pass: 
stable bucket sort by 100s digit 

Order now: 3
9

38
67

143
478
537
721

Radix = 10
1

143
2 3 4

478
5

537
6 7

721
8 90

3
9

38
67Order was: 3

9
721
537
38

143
67

478

1 2
721

3
537
38

4
143

5 6
67

7
478

8 90
3
9 Visualization

• http://www.cs.usfca.edu/~galles/visualization/RadixSort.html

Winter 2016 30CSE 373: Data Structures & Algorithms



2/28/2016

6

Analysis
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P
Work per pass is 1 bucket sort: O(B+n)
Total work is O(P(B+n))
Compared to comparison sorts, sometimes a win, but often not

– Example: Strings of English letters up to length 15
• Run-time proportional to: 15*(52 + n) 
• This is less than n log n only if n > 33,000
• Of course, cross-over point depends on constant factors of 

the implementations
– And radix sort can have poor locality properties

Winter 2016 31CSE 373: Data Structures & Algorithms

Sorting massive data
• Need sorting algorithms that minimize disk/tape access time:

– Quicksort and Heapsort both jump all over the array, leading to 
expensive random disk accesses

– Merge sort scans linearly through arrays, leading to (relatively) 
efficient sequential disk access

• Merge sort is the basis of massive sorting

• Merge sort can leverage multiple disks

32CSE 373: Data Structures & AlgorithmsFall 2013

External Merge Sort
• Sort 900 MB using 100 MB RAM

– Read 100 MB of data into memory
– Sort using conventional method (e.g. quicksort)
– Write sorted 100MB to temp file
– Repeat until all data in sorted chunks (900/100 = 9 total)

• Read first 10 MB of each sorted chuck, merge into remaining 
10MB
– writing and reading as necessary
– Single merge pass instead of log n
– Additional pass helpful if data much larger than memory

• Parallelism and better hardware can improve performance
• Distribution sorts (similar to bucket sort) are also used

Winter 2016 33CSE 373: Data Structures & Algorithms

Last Slide on Sorting
• Simple O(n2) sorts can be fastest for small n

– Selection sort, Insertion sort (latter linear for mostly-sorted)
– Good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts
– Heap sort, in-place but not stable nor parallelizable
– Merge sort, not in place but stable and works as external sort
– Quick sort, in place but not stable and O(n2) in worst-case

• Often fastest, but depends on costs of comparisons/copies
•  (n log n) is worst-case and average lower-bound for sorting by 

comparisons
• Non-comparison sorts

– Bucket sort good for small number of possible key values
– Radix sort uses fewer buckets and more phases

• Best way to sort?  It depends!
Winter 2016 34CSE 373: Data Structures & Algorithms


