
2/18/2016

1

CSE 373: Data Structures & Algorithms
Topological Sorting and Graph Traversals

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.  
Thank you to all who have contributed!

Topological Sort
Problem: Given a DAG G=(V,E), output all vertices in an order such 

that no vertex appears before another vertex that has an edge to it

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

2CSE373: Data Structures & Algorithms

Disclaimer: Do not use for official 
advising purposes !

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Questions and comments
• Why do we perform topological sorts only on DAGs?

– Because a cycle means there is no correct answer

• Is there always a unique answer?
– No, there can be 1 or more answers; depends on the graph

• Do some DAGs have exactly 1 answer?
– Yes, including all lists 

• Terminology: A DAG represents a partial order and a topological 
sort produces a total order that is consistent with it

3CSE373: Data Structures & Algorithms

0
1

3

2
4

Winter 2016

Uses
• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of 
execution 

• …

4CSE373: Data Structures & AlgorithmsWinter 2016

A First Algorithm for Topological Sort
1. Label (“mark”) each vertex with its in-degree

– Think “write in a field in the vertex”
– Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex v with labeled with in-degree of 0
b) Output v and conceptually remove it from the graph
c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u

5CSE373: Data Structures & AlgorithmsWinter 2016

Example Output: 

6CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?
In-degree:    0       0     2      1       1       1     1      1      1      3

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016



2/18/2016

2

Example Output: 
126

7CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x
In-degree:    0       0     2      1       1       1     1      1      1      3

1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Example Output: 
126
142

8CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x
In-degree:    0       0     2      1       1       1     1      1      1      3

1
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Example Output: 
126
142
143

9CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x x
In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Example Output: 
126
142
143
374

10CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x x x
In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0                                      2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Example Output: 
126
142
143
374
373

11CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x x x x
In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Example Output: 
126
142
143
374
373
417

12CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x x x x x
In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016



2/18/2016

3

Example Output: 
126
142
143
374
373
417
410

13CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x x x x x x
In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2
0                                                       1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Example Output: 
126
142
143
374
373
417
410
413

14CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x x x x x x x
In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2
0                                                       1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Example Output: 
126
142
143
374
373
417
410
413
XYZ

15CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x x x x x x x x
In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2
0                                                       1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Example Output: 
126
142
143
374
373
417
410
413
XYZ
415

16CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?   x       x x x x x x x x x
In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2
0                                                       1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

Notice

• Needed a vertex with in-degree 0 to start
– Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken 
arbitrarily
– Can be more than one correct answer, by definition, 

depending on the graph

17CSE373: Data Structures & AlgorithmsWinter 2016

Running time?

• What is the worst-case running time?
– Initialization O(|V|+|E|) (assuming adjacency list)
– Sum of all find-new-vertex O(|V|2) (because each O(|V|))
– Sum of all decrements O(|E|) (assuming adjacency list)
– So total is O(|V|2) – not good for a sparse graph!

18CSE373: Data Structures & Algorithms

labelEachVertexWithItsInDegree()
for ctr in range(numVertices):
v = findNewVertexOfDegreeZero()
put v next in output
for each w adjacent to v:
w.indegree -=1

Winter 2016



2/18/2016

4

Doing better
The trick is to avoid searching for a zero-degree node every time!

– Keep the “pending” zero-degree nodes in a list, stack, 
queue, bag, table, or something

– Order we process them affects output but not correctness or 
efficiency provided add/remove are both O(1)

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v = dequeue()
b) Output v and remove it from the graph
c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u, if new degree is 0, enqueue it
19CSE373: Data Structures & AlgorithmsWinter 2016

Running time?

20CSE373: Data Structures & Algorithms

• What is the worst-case running time?
– Initialization: O(|V|+|E|) (assuming adjacency list)
– Sum of all enqueues and dequeues: O(|V|)
– Sum of all decrements: O(|E|) (assuming adjacency list)
– So total is O(|E| + |V|) – much better for sparse graph!

labelAllAndEnqueueZeros()
for ctr in range(numVertices):

v = dequeue()
put v next in output
for each w adjacent to v:

w.indegree -= 1
if w.indegree==0:enqueue(v)

Winter 2016

Topological Sort
Problem: Given a DAG G=(V,E), output all vertices in an order such 

that no vertex appears before another vertex that has an edge to it

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

21CSE373: Data Structures & Algorithms

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126
CSE 417
CSE 415
CSE 413

XYZ

Winter 2016

We interrupt this program for an exciting 
announcement.  CSE 415 will be offered 
next quarter!  We will be using the 
Python language!

Graph Traversals
Next problem: For an arbitrary graph and a starting node v, find all 

nodes reachable from v (i.e., there exists a path from v)
– Possibly “do something” for each node 
– Examples: print to output, set a field, etc.

• Subsumed problem: Is an undirected graph connected?
• Related but different problem: Is a directed graph strongly 

connected?
– Need cycles back to starting node

Basic idea: 
– Keep following nodes
– But “mark” nodes after visiting them, so the traversal terminates 

and processes each reachable node exactly once
22CSE373: Data Structures & AlgorithmsWinter 2016

Abstract Idea

23CSE373: Data Structures & Algorithms

traverseGraph(startNode):
Set pending = emptySet()
pending.add(startNode)
mark startNode as visited
while pending is not empty:

next = pending.remove()
for each node u adjacent to next:

if(u is not marked):
mark u
pending.add(u)

Winter 2016

Running Time and Options
• Assuming add and remove are O(1), entire traversal is O(|E|)

– Use an adjacency list representation
• The order we traverse depends entirely on add and remove

– Popular choice: a stack  “depth-first graph search”  “DFS”
– Popular choice: a queue “breadth-first graph search” “BFS”

• DFS and BFS are “big ideas” in computer science
– Depth: recursively explore one part before going back to the 

other parts not yet explored
– Breadth: explore areas closer to the start node first

24CSE373: Data Structures & AlgorithmsWinter 2016



2/18/2016

5

Example: Depth First Search
• A tree is a graph and DFS and BFS are particularly easy to “see” 

25CSE373: Data Structures & Algorithms

A
B

D E
C
F

HG

DFS(startNode):
Mark and process startNode.
For each node u adjacent to startNode:

if u is not marked:
DFS(u)

•
• Exactly what we called a “pre-order traversal” for trees

– The marking is because we support arbitrary graphs and we 
want to process each node exactly once

B D E C F G HA

Winter 2016

Example: Another Depth First Search
• A tree is a graph and DFS and BFS are particularly easy to “see” 

26CSE373: Data Structures & Algorithms

A
B

D E
C
F

HG

DFS2(startNode):
Let s = Stack(). s.push(startNode)
Mark startNode as visited.
while s is not empty:

next = s.pop() # and “process”
For each node u adjacent to next:
if u is not marked:

mark u; s.push(u)

•
• A different but perfectly fine traversal

C F H G B E DA

Winter 2016

Example: Breadth First Search
• A tree is a graph and DFS and BFS are particularly easy to “see” 

27CSE373: Data Structures & Algorithms

A
B

D E
C
F

HG

BFS(startNode):
Let q = Queue(); q.enqueue(startNode)
Mark startNode as visited.
while q is not empty:

next = q.dequeue() # and “process”
For each node u adjacent to next:

if u is not marked:
mark u and q.enqueue(u)

•
• A “level-order” traversal

B C D E F G HA

Winter 2016

Comparison
• Breadth-first always finds shortest paths, i.e., “optimal solutions”

– Better for “what is the shortest path from x to y”
• But depth-first can use less space in finding a path

– If longest path in the graph is p and highest out-degree is d
then DFS stack never has more than d*p elements

– But a queue for BFS may hold O(|V|) nodes
• A third approach:

– Iterative deepening (IDFS): 
• Try DFS but disallow recursion more than K levels deep
• If that fails, increment K and start the entire search over

– Like BFS, finds shortest paths.  Like DFS, less space.

28CSE373: Data Structures & AlgorithmsWinter 2016

Saving the Path
• Our graph traversals can answer the reachability question:

– “Is there a path from node x to node y?”
• But what if we want to actually output the path?

– Like getting driving directions rather than just knowing it’s 
possible to get there!

• How to do it: 
– Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the search, set v.path field to be u)
– When you reach the goal, follow path fields back to where 

you started (and then reverse the answer)
– If just wanted path length, could put the integer distance at 

each node instead
29CSE373: Data Structures & AlgorithmsWinter 2016

Example using BFS

30CSE373: Data Structures & Algorithms

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Tyler
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Tyler
1

1

1

2
3

0

Winter 2016



2/18/2016

6

Single source shortest paths
• Done: BFS to find the minimum path length from v to u in O(|E|+|V|)

• Actually, can find the minimum path length from v to every node
– Still O(|E|+|V|)
– No faster way for a “distinguished” destination in the worst-case

• Now:  Weighted graphs 
Given a weighted graph and node v, 

find the minimum-cost path from v to every node 
• As before, asymptotically no harder than for one destination

31CSE373: Data Structures & AlgorithmsWinter 2016

Applications
• Driving directions

• Cheap flight itineraries

• Network routing

• Critical paths in project management

32CSE373: Data Structures & AlgorithmsWinter 2016

Not as easy as BFS

Why BFS won’t work: Shortest path may not have the fewest edges
– Annoying when this happens with costs of flights

33CSE373: Data Structures & Algorithms

500
100 100 100 100

We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Today’s algorithm is wrong if edges can be negative

– There are other, slower (but not terrible) algorithms

7
10 5

-11

Winter 2016

Dijkstra’s Algorithm
• Named after its inventor Edsger Dijkstra (1930-2002)

– Truly one of the “founders” of computer science;                
this is just one of his many contributions

– Many people have a favorite Dijkstra story, even if they 
never met him

34CSE373: Data Structures & AlgorithmsWinter 2016

Dijkstra’s Algorithm
• The idea: reminiscent of BFS, but adapted to handle weights

– Grow the set of nodes whose shortest distance has been 
computed

– Nodes not in the set will have a “best distance so far”
– A priority queue will turn out to be useful for efficiency

• An example of a greedy algorithm
– A series of steps
– At each one the locally optimal choice is made

35CSE373: Data Structures & AlgorithmsWinter 2016


