
2/5/2016

1

CSE373: Data Structures and Algorithms
Minimum Spanning Trees and

Kruskal's Algorithm
Steve Tanimoto

Winter 2016
This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Minimum Spanning Trees
The minimum-spanning-tree problem

– Given a weighted undirected graph, compute a spanning
tree of minimum weight

Winter 2016 2CSE 373: Data Structures & Algorithms

Minimum Spanning Tree Algorithms

• Kruskal’s Algorithm for Minimum Spanning Tree construction
– A greedy algorithm.
– Uses a priority queue.
– Uses the UNION-FIND technique.

• Prim’s Algorithm for Minimum Spanning Tree
– Related to Dijkstra’s Algorithm for shortest paths.
– Both based on expanding cloud of known vertices

(basically using a priority queue instead of a DFS stack)

Winter 2016 3CSE 373: Data Structures & Algorithms

Kruskal’s Algorithm

Winter 2016 4CSE 373: Data Structures & Algorithms

Kruskal’s Algorithm Pseudocode
1. Sort edges by weight (better: put in min-heap)
2. Put each node in its own subset (of a UNION-FIND instance).
3. While output size < |V|-1

– Consider next smallest edge (u,v)
– if find(u) and find(v) indicate u and v are in different

sets
• output (u,v)
• Perform union(find(u),find(v))

Recall invariant:
u and v in same set if and only if connected in output-so-far

Winter 2016 5CSE 373: Data Structures & Algorithms

Kruskal’s Example

Winter 2016 6CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:
Note: At each step, the UNION-FIND subsets correspond to
the trees in a forest.

2/5/2016

2

Kruskal’s Example

Winter 2016 7CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Winter 2016 8CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Winter 2016 9CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Winter 2016 10CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Winter 2016 11CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Winter 2016 12CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

2/5/2016

3

Kruskal’s Example

Winter 2016 13CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

Winter 2016 14CSE 373: Data Structures & Algorithms

A B

C D

F

E

G

2
12 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Algorithm Analysis
Idea: Grow a forest out of edges that do not grow a cycle. (This is

similar to the maze-construction problem: knocking down a wall was
essentially adding an edge that connected adjacent cells.)
– But now consider the edges in order by weight

So:
– Sort edges: O(|E|log |E|)
– Iterate through edges using union-find for cycle detection almost

O(|E|)
Somewhat better:

– Floyd’s algorithm to build min-heap with edges O(|E|)
– Iterate through edges using UNION-FIND for cycle prevention and deleteMin to get next edge O(|E|log |E|)
– Not better worst-case asymptotically, but often stops long before

considering all edges.
Winter 2016 15CSE 373: Data Structures & Algorithms

A F

B C

D

E

2

7
4 5

8 6 4

5
3

8

List the edges in
order of size:
ED 2
AB 3
AE 4
CD 4
BC 5
EF 5
CF 6
AF 7
BF 8
CF 8

Kruskal’s Algorithm

Winter 2016 16CSE 373: Data Structures & Algorithms

Select the edge
with min cost
ED 2

A F

B C

D

E

2

7
4 5

8 6 4

5
3

8

Kruskal’s Algorithm

Winter 2016 17CSE 373: Data Structures & Algorithms

Select the next
minimum cost
edge that does not
create a cycle
ED 2
AB 3

A F

B C

D

E

2

7
4 5

8 6 4

5
3

8

Kruskal’s Algorithm

Winter 2016 18CSE 373: Data Structures & Algorithms

2/5/2016

4

Select the next
minimum cost
edge that does not
create a cycle
ED 2
AB 3
CD 4 (or AE 4)

A F

B C

D

E

2

7
4 5

8 6 4

5
3

8

Kruskal’s Algorithm

Winter 2016 19CSE 373: Data Structures & Algorithms

Select the next
minimum cost
edge that does not
create a cycle
ED 2
AB 3
CD 4
AE 4A F

B C

D

E

2

7
4 5

8 6 4

5
3

8

Kruskal’s Algorithm

Winter 2016 20CSE 373: Data Structures & Algorithms

Select the next
minimum cost
edge that does not
create a cycle
ED 2
AB 3
CD 4
AE 4
BC 5 – forms a cycle
EF 5

A F

B C

D

E

2

7
4 5

8 6 4

5
3

8

Kruskal’s Algorithm

Winter 2016 21CSE 373: Data Structures & Algorithms

All vertices have been
connected.
The solution is
ED 2
AB 3
CD 4
AE 4
EF 5

Total weight of tree: 18

A F

B C

D

E

2

7
4 5

8 6 4

5
3

8

Kruskal’s Algorithm

Winter 2016 22CSE 373: Data Structures & Algorithms

