Minimum Spanning Trees and Kruskal's Algorithm

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Minimum Spanning Trees

The minimum-spanning-tree problem
– Given a weighted undirected graph, compute a spanning tree of minimum weight

Given an undirected graph \(G = (V, E) \), find a graph \(G' = (V, E') \) such that:
– \(E' \) is a subset of \(E \)
– \(|E'| = |V| - 1 \)
– \(G' \) is connected

G' is a minimum spanning tree.

Minimum Spanning Tree Algorithms

• Kruskal's Algorithm for Minimum Spanning Tree construction
 – A greedy algorithm.
 – Uses a priority queue.
 – Uses the UNION-FIND technique.

• Prim's Algorithm for Minimum Spanning Tree
 – Related to Dijkstra's Algorithm for shortest paths.
 – Both based on expanding cloud of known vertices (basically using a priority queue instead of a DFS stack)

Kruskal's Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

An edge-based greedy algorithm
Builds MST by greedily adding edges

Kruskal's Algorithm Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Put each node in its own subset (of a UNION-FIND instance)
3. While output size < \(|V| - 1 \)
 – Consider next smallest edge \((u,v) \)
 – if \(\text{find}(u) \) and \(\text{find}(v) \) indicate \(u \) and \(v \) are in different sets
 • output \((u,v) \)
 • Perform \(\text{union}(\text{find}(u), \text{find}(v)) \)

Recall invariant:
\(u \) and \(v \) in same set if and only if connected in output-so-far

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:
Note: At each step, the UNION-FIND subsets correspond to the trees in a forest.
Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union-find sets are the trees in the forest.

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union-find sets are the trees in the forest.

Kruskal's Algorithm Analysis

Idea: Grow a forest out of edges that do not grow a cycle. (This is similar to the maze-construction problem: knocking down a wall was essentially adding an edge that connected adjacent cells.)

- But now consider the edges in order by weight

So:
- Sort edges: $O(|E|\log |E|)$
- Iterate through edges using union-find for cycle detection almost $O(|E|)$

Somewhat better:
- Floyd's algorithm to build min-heap with edges $O(|E|)$
- Iterate through edges using UNION-FIND for cycle prevention and deleteMin to get next edge $O(|E|\log |E|)$
- Not better worst-case asymptotically, but often stops long before considering all edges.

Kruskal's Algorithm

List the edges in order of size:
- ED 2
- AB 3
- AE 4
- CD 4
- BC 5
- EF 5
- CF 6
- AF 7
- BF 8
- CF 8

Kruskal's Algorithm

Select the edge with min cost:

ED 2

Kruskal's Algorithm

Select the next minimum cost edge that does not create a cycle:

ED 2, **AB 3**
Select the next minimum cost edge that does not create a cycle:

- ED 2
- AB 3
- CD 4 (or AE 4)

BC 5 – forms a cycle

EF 5

All vertices have been connected. The solution is:

- ED 2
- AB 3
- CD 4
- AE 4
- EF 5

Total weight of tree: 18