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CSE373: Data Structures and Algorithms
Hashing II (Collisions)

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.  
Thank you to all who have contributed!

Hash Tables: Review
• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions
• A hash table is an array of some fixed size

– But growable as we’ll see
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Collision resolution
Collision: 

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
– Ideas?

Winter 2016 3CSE 373: Data Structures & Algorithms

Separate Chaining
Chaining:

All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashingand TableSize = 10
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Separate Chaining
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10 / Chaining: 
All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: 
insert 10, 22, 107, 12, 42 
with mod hashing 
and TableSize = 10

Separate Chaining
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Chaining: 
All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: 
insert 10, 22, 107, 12, 42 
with mod hashing 
and TableSize = 10
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Separate Chaining
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Chaining: 
All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: 
insert 10, 22, 107, 12, 42 
with mod hashing 
and TableSize = 10

Separate Chaining
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Chaining: 
All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: 
insert 10, 22, 107, 12, 42 
with mod hashing 
and TableSize = 10

Separate Chaining
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Chaining: 
All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: 
insert 10, 22, 107, 12, 42 
with mod hashing 
and TableSize = 10

Thoughts on chaining
• Worst-case time for find?

– Linear
– But only with really bad luck or bad hash function
– So not worth avoiding (e.g., with balanced trees at each 

bucket)

• Beyond asymptotic complexity, some “data-structure 
engineering” may be warranted
– Linked list vs. array vs. chunked list (lists should be short!)
– Move-to-front
– Maybe leave room for 1 element (or 2?) in the table itself, to 

optimize constant factors for the common case
• A time-space trade-off…

Winter 2016 10CSE 373: Data Structures & Algorithms

Time vs. space (constant factors only here)
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More rigorous chaining analysis
Definition: The load factor, , of a hash table is
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N
TableSize   number of elements

Under chaining, the average number of elements per bucket is ___
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More rigorous chaining analysis
Definition: The load factor, , of a hash table is
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N
TableSize   number of elements

Under chaining, the average number of elements per bucket is 
So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against ____ items

More rigorous chaining analysis
Definition: The load factor, , of a hash table is
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N
TableSize   number of elements

Under chaining, the average number of elements per bucket is 
So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against  items
• Each successful find compares against _____ items

More rigorous chaining analysis
Definition: The load factor, , of a hash table is
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N
TableSize   number of elements

Under chaining, the average number of elements per bucket is 
So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against  items
• Each successful find compares against  / 2 items

So we like to keep  fairly low (e.g., 1 or 1.5 or 2) for chaining

Alternative: Use empty space in the table
• Another simple idea: If h(key) is already full, 

– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10
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Alternative: Use empty space in the table
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• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Winter 2016 18CSE 373: Data Structures & Algorithms

0 8
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 19

• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10
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Alternative: Use empty space in the table
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0 8
1 109
2 /
3 /
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• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table
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0 8
1 109
2 10
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• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10

Probing hash tables
Trying the next spot is called probing (also called open addressing)

– We just did linear probing
• ith probe was (h(key) + i) % TableSize

– In general have some probe function f and use              
h(key) + f(i) % TableSize

Open addressing does poorly with high load factor 
– So want larger tables
– Too many probes means no more O(1)
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Other operations
insert finds an open table position using a probe function

What about find?
– Must use same probe function to “retrace the trail” for the data
– Unsuccessful search when reach empty position

What about delete?
– Must use “lazy” deletion.  Why?

• Marker indicates “no data here, but don’t stop probing”
– Note: delete with chaining is plain-old list-remove
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(Primary) Clustering
It turns out linear probing is a bad idea, even though the probe 

function is quick to compute (which is a good thing)
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[R. Sedgewick]

Tends to produce
clusters, which lead to
long probing sequences
• Called primary 

clustering
• Saw this starting in 

our example

Analysis of Linear Probing
• Trivial fact: For any  < 1, linear probing will find an empty slot

– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
Average # of probes given  (in the limit as TableSize→ )
– Unsuccessful search:

– Successful search:  

• This is pretty bad: need to leave sufficient empty space in the 
table to get decent performance (see chart)
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In a chart
• Linear-probing performance degrades rapidly as table gets full

– (Formula assumes “large table” but point remains)

• By comparison, chaining performance is linear in  and has no 
trouble with >1
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Quadratic probing
• We can avoid primary clustering by changing the probe function

(h(key) + f(i)) % TableSize
• A common technique is quadratic probing:

f(i) = i2
– So probe sequence is:

• 0th probe:  h(key) % TableSize
• 1st probe: (h(key) + 1) % TableSize
• 2nd probe: (h(key) + 4) % TableSize
• 3rd probe: (h(key) + 9) % TableSize
• …
• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”
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Quadratic Probing Example
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Insert: 
89
18
49
58
79

Quadratic Probing Example
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Quadratic Probing Example
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Quadratic Probing Example
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Quadratic Probing Example
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TableSize=10
Insert: 
89
18
49
58
79

Quadratic Probing Example
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0 49
1
2 58
3 79
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9 89

TableSize=10
Insert: 
89
18
49
58
79

Another Quadratic Probing Example
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TableSize = 7
Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)
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6

Another Quadratic Probing Example
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TableSize = 7
Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)
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Another Quadratic Probing Example
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TableSize = 7
Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0
1
2
3
4
5 40
6 76

Another Quadratic Probing Example
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TableSize = 7
Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0 48
1
2
3
4
5 40
6 76
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Another Quadratic Probing Example
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TableSize = 7
Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0 48
1
2 5
3
4
5 40
6 76

Another Quadratic Probing Example
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TableSize = 7
Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0 48
1
2 5
3 55
4
5 40
6 76

Another Quadratic Probing Example

Winter 2016 39CSE 373: Data Structures & Algorithms

TableSize = 7
Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0 48
1
2 5
3 55
4
5 40
6 76

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6
• Excel shows takes “at least” 50 probes and a pattern• Proof (like induction) using(n2+5) % 7 = ((n-7)2+5) % 7

• In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k

From Bad News to Good News
• Bad news: 

– Quadratic probing can cycle through the same full indices, never 
terminating despite table not being full

• Good news: 
– If TableSize is prime and  < ½, then quadratic probing will find an 

empty slot in at most TableSize/2 probes
– So: If you keep  < ½ and TableSize is prime, no need to detect 

cycles
– Optional: Proof is available at
– http://courses.cs.washington.edu/courses/cse373/14au/uwnetid/quadraticProbingProof.txt

• Key fact: For prime T and 0 < i,j < T/2 where i  j,
(k + i2) % T  (k + j2) % T (i.e., no index repeat)
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Clustering reconsidered
• Quadratic probing does not suffer from primary clustering:       

no problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index
– Called secondary clustering

• Can avoid secondary clustering with a probe function that 
depends on the key: double hashing…
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Double hashing
Idea: 

– Given two good hash functions h and g, it is very unlikely that for some key,  h(key) == g(key)
– So make the probe function f(i) = i*g(key)

Probe sequence:
• 0th probe:  h(key) % TableSize
• 1st probe:  (h(key) + g(key))   % TableSize
• 2nd probe: (h(key) + 2*g(key)) % TableSize
• 3rd probe: (h(key) + 3*g(key)) % TableSize
• …
• ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) cannot be 0
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Double-hashing analysis
• Intuition: Because each probe is “jumping” by g(key) each 

time, we “leave the neighborhood” and “go different places from 
other initial collisions”

• But we could still have a problem like in quadratic probing where 
we are not “safe” (infinite loop despite room in table)
– It is known that this cannot happen in at least one case:

• h(key) = key % p
• g(key) = q – (key % q)
• 2 < q < p
• p and q are prime
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More double-hashing facts
• Assume “uniform hashing” 

– Means probability of g(key1) % p == g(key2) % p is 
1/p

• Non-trivial facts we won’t prove:
Average # of probes given  (in the limit as TableSize→ )
– Unsuccessful search (intuitive):

– Successful search (less intuitive):

• Bottom line: unsuccessful bad (but not as bad as linear probing), 
but successful is not nearly as bad
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Charts
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Rehashing
• As with array-based stacks/queues/lists, if table gets too full, 

create a bigger table and copy everything
• With chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?
– Consider average or max size of non-empty chains?

• For probing, half-full is a good rule of thumb

• New table size
– Twice-as-big is a good idea, except that won’t be prime!
– So go about twice-as-big 
– Can have a list of prime numbers in your code since you won’t 

grow more than 20-30 times
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Hashtable Scenarios
• For each of the scenarios, answer the following questions:

– Is a hashtable the best-suited data structure?
– If so, what would be used at the keys? Values?
– If not, what data structure would be best-suited?
– What other assumptions, if any, about the scenario must you 

make to support your previous answers?

• Catalog of items (product id, name, price)
• Bookmarks in a web browser (favicon, URL, bookmark name)
• IT support requests (timestamp, ticket id, description)
• Character frequency analysis (character, # of appearances)
• Activation records for nested function calls (return addresses, 

local variables, etc.)
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