
1/21/2016

1

CSE373: Data Structures and Algorithms
AVL Trees

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Review: Binary Search Tree (BST)

4

121062

115

8

14

13

7 9

• Structure property (binary tree)
– Each node has  2 children
– Result: keeps operations simple

• Order property
– All keys in left subtree smaller

than node’s key
– All keys in right subtree larger

than node’s key
– Result: easy to find any given key

Winter 2016 2CSE373: Data Structures & Algorithms

BST: Efficiency of Operations?

Winter 2016 CSE373: Data Structures & Algorithms 3

• Problem: operations may be inefficient if BST is
unbalanced.

• Find, insert, delete
– O(n) in the worst case

• BuildTree
– O(n2) in the worst case

Observation
• BST: the shallower the better!
Solution: Require and maintain a Balance Condition that
1. Ensures depth is always O(log n) – strong enough!
2. Is efficient to maintain – not too strong!

Winter 2016 4CSE373: Data Structures & Algorithms

How can we make a BST efficient?

• When we build the tree, make sure it’s balanced.
• BUT…Balancing a tree only at build time is insufficient because

sequences of operations can eventually transform our carefully balanced
tree into the dreaded list 

• So, we also need to also keep the tree balanced as we perform operations.

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Too weak!
Height mismatch example:

Too weak!
Double chain example:

Winter 2016 5CSE373: Data Structures & Algorithms

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2n – 1 nodes)

Too strong!
Only perfect trees (2n – 1 nodes)

Winter 2016 6CSE373: Data Structures & Algorithms

1/21/2016

2

7

The AVL Balance Condition
Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1  balance(x)  1

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h
(i.e. height must be logarithmic in number of nodes)

• Efficient to maintain
– Using single and double rotations

Winter 2016 CSE373: Data Structures & Algorithms 8

The AVL Tree Data Structure
An AVL tree is a self-balancing binary search tree.

Structural properties
1. Binary tree property (same as BST)
2. Order property (same as for BST)

1. Balance property:
balance of every node is between -1 and 1

Result: Worst-case depth is O(log n)

• Named after inventors Adelson-Velskii and Landis (AVL)
– First invented in 1962

Winter 2016 CSE373: Data Structures & Algorithms

111
84

6

10 12
70

0 0
0

1
1

2
3

Is this an AVL tree?

Winter 2016 CSE373: Data Structures & Algorithms 9

Yes! Because the left and right subtrees of every
node have heights differing by at most 1

3
1171

84
6

2

5

0

0 0 0
1

1
2

3
4

Is this an AVL tree?

Winter 2016 CSE373: Data Structures & Algorithms 10

Nope! The left and right subtrees of some nodes (e.g.
1, 4, 6) have heights that differ by more than 1

11

The shallowness bound
Let S(h) = the minimum number of nodes in an AVL tree of height h

– S(h) grows exponentially in h.
• (Can be proved, but we will not do it in class.)

– Therefore, a tree with n nodes has a logarithmic height
– Thus FIND can be done in O(log n) time.
– We will also see that INSERT and DELETE can be done in O(log n) time, while maintaining the AVL property.

h-1h-2
h

Winter 2016 CSE373: Data Structures & Algorithms

Implementing AVL Trees
Node structure

Tree operations
(We'll want to be sure these operate in O(log n) worst case time.)

Winter 2016 12CSE373: Data Structures & Algorithms

1/21/2016

3

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3

Track height at all times!

Winter 2016 CSE373: Data Structures & Algorithms 13

…
3

value
height
children

10 key
Node object AVL tree operations

• AVL find:
– Same as BST find

• AVL insert:
– First BST insert, then check balance and potentially “fix” the

AVL tree
– Four different imbalance cases

• AVL delete:
– The “easy way” is lazy deletion
– Otherwise, do the deletion and then check for several imbalance

cases (we will skip this)

Winter 2016 CSE373: Data Structures & Algorithms 14

Insert: detect potential imbalance
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3. So after insertion in a subtree, detect height imbalance and

perform a rotation to restore balance at that node
All the action is in defining the correct rotations to restore balance
Fact that an implementation can ignore:

– There must be a deepest element that is imbalanced after the
insert (all descendants still balanced)

– After rebalancing this deepest node, every node is balanced
– So at most one node needs to be rebalanced

Winter 2016 15CSE373: Data Structures & Algorithms

Case #1: Example

Winter 2016 16CSE373: Data Structures & Algorithms

Insert(6)
Insert(3)
Insert(1)

Third insertion violates
balance property
• happens to be at

the root

What is the only way to
fix this?

6
3

1

2

1

0

6
3

1

0
6 0

6
3

1 0

1

0

Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to rebalance

– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)

Winter 2016 17CSE373: Data Structures & Algorithms

3

1 6 00

1
6

3
0

1

2
AVL Property violated at node 6

Child’s new-height = old-height-before-insert
1

The example generalized
• Insertion into left-left grandchild causes an imbalance

– 1 of 4 possible imbalance causes (other 3 coming up!)
• Creates an imbalance in the AVL tree (specifically a is imbalanced)

Winter 2016 18CSE373: Data Structures & Algorithms

a

Z
Y

b

X
h h

h
h+1

h+2 a

Z
Y

b

X
h+1 h

h
h+2

h+3

1/21/2016

4

The general left-left case
• So we rotate at a

– Move child of unbalanced node into parent position
– Parent becomes the “other” child
– Other sub-trees move in the only way BST allows:

• using BST facts: X < b < Y < a < Z

Winter 2016 19CSE373: Data Structures & Algorithms

• A single rotation restores balance at the node
– To same height as before insertion, so ancestors now balanced

a

Z
Y

b

X
h+1 h

h
h+2

h+3 b

ZY

a
h+1 h h

h+1
h+2

X

Another example: insert(16)

Winter 2016 20CSE373: Data Structures & Algorithms

104
228

15

3 6
19

17 20
24

16

104
8

15

3 6

19
17

2016
22

24

The general right-right case
• Mirror image to left-left case, so you rotate the other way

– Exact same concept, but need different code

Winter 2016 21CSE373: Data Structures & Algorithms

a

ZY
X

h
h h+1

h+3

b
h+2 b

ZY

a

X
h h

h+1
h+1

h+2

Two cases to go
Unfortunately, single rotations are not enough for insertions in the

left-right subtree or the right-left subtree
Simple example: insert(1), insert(6), insert(3)

– First wrong idea: single rotation like we did for left-left

Winter 2016 22CSE373: Data Structures & Algorithms

3
6

1

0
1

2
6

1 3

1

0 0

Violates order
property!

Two cases to go
Unfortunately, single rotations are not enough for insertions in the

left-right subtree or the right-left subtree
Simple example: insert(1), insert(6), insert(3)

– Second wrong idea: single rotation on the child of the
unbalanced node

Winter 2016 23CSE373: Data Structures & Algorithms

3
6

1

0
1

2

6
3

1

0
1

2
Still unbalanced!

Sometimes two wrongs make a right 
• First idea violated the order property
• Second idea didn’t fix balance
• But if we do both single rotations, starting with the second, it

works! (And not just for this example.)
• Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Winter 2016 24CSE373: Data Structures & Algorithms
3

6
1

0
1

2

6
3

1

0
1

2
1

00 1
3

6

1/21/2016

5

The general right-left case

Winter 2016 25CSE373: Data Structures & Algorithms

a

X
b

c h-1
h

h
h

VU

h+1
h+2

h+3

Z

a

X
c

h-1
h+1h

h

VU

h+2
h+3

Z

b
h

c

X
h-1

h+1
h

h+1

VU

h+2

Z

b
h

a
h

Comments
• Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

Winter 2016 26CSE373: Data Structures & Algorithms

a

X
b

c h-1
h

h
h

VU

h+1
h+2

h+3

Z

c

X
h-1

h+1
h

h+1

VU

h+2

Z

b
h

a
h

Easier to remember than you may think:
Move c to grandparent’s position
Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right
• Mirror image of right-left

– Again, no new concepts, only new code to write

Winter 2016 27CSE373: Data Structures & Algorithms

a

h-1

h

hh
VU

h+1
h+2

h+3

Z
X

b
c

c

X
h-1

h+1
h

h+1

VU

h+2

Z

a
h

b
h

Insert, summarized
• Insert as in a BST
• Check back up path for imbalance, which will be 1 of 4 cases:

– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert
• After the appropriate single or double rotation, the smallest-

unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced

Winter 2016 28CSE373: Data Structures & Algorithms

Now efficiency
• Worst-case complexity of find: O(log n)

– Tree is balanced
• Worst-case complexity of insert: O(log n)

– Tree starts balanced
– A rotation is O(1) and there’s an O(log n) path to root
– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…

Winter 2016 29CSE373: Data Structures & Algorithms

Pros and Cons of AVL Trees

Winter 2016 CSE373: Data Structures & Algorithms 30

Arguments for AVL trees:
1. All operations logarithmic worst-case because trees are always

balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete
Arguments against AVL trees:
1. Difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If “amortized” logarithmic time is enough, use “splay trees.”

