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CSE373: Data Structures and Algorithms
AVL Trees

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.  
Thank you to all who have contributed!

Review: Binary Search Tree (BST)
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• Structure property (binary tree)
– Each node has  2 children
– Result: keeps operations simple

• Order property
– All keys in left subtree smaller

than node’s key
– All keys in right subtree larger

than node’s key
– Result: easy to find any given key
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BST: Efficiency of Operations?
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• Problem: operations may be inefficient if BST is 
unbalanced. 

• Find, insert, delete
– O(n) in the worst case

• BuildTree
– O(n2) in the worst case

Observation
• BST: the shallower the better!
Solution:  Require and maintain a Balance Condition that
1. Ensures depth is always O(log n) – strong enough!
2. Is efficient to maintain         – not too strong!
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How can we make a BST efficient? 

• When we build the tree, make sure it’s balanced. 
• BUT…Balancing a tree only at build time is insufficient because 

sequences of operations can eventually transform our carefully balanced 
tree into the dreaded list 

• So, we also need to also keep the tree balanced as we perform operations.

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Too weak!
Height mismatch example:

Too weak!
Double chain example:
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Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2n – 1 nodes)

Too strong!
Only perfect trees (2n – 1 nodes)
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The AVL Balance Condition
Left and right subtrees of every node have heights differing by at most 1

Definition:  balance(node) = height(node.left) – height(node.right)

AVL property: for every node x,   –1  balance(x)  1   

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h 
(i.e. height must be logarithmic in number of nodes)

• Efficient to maintain
– Using single and double rotations
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The AVL Tree Data Structure
An AVL tree is a self-balancing binary search tree.

Structural properties
1. Binary tree property (same as BST)
2. Order property (same as for BST)

1. Balance property:
balance of every node is between -1 and 1

Result: Worst-case depth is O(log n)

• Named after inventors Adelson-Velskii and Landis (AVL)
– First invented in 1962
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Is this an AVL tree?
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Yes! Because the left and right subtrees of every 
node have heights differing by at most 1
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Is this an AVL tree?
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Nope! The left and right subtrees of some nodes (e.g. 
1, 4, 6) have heights that differ by more than 1
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The shallowness bound
Let S(h) = the minimum number of nodes in an AVL tree of height h

– S(h) grows exponentially in h.
• (Can be proved, but we will not do it in class.)

– Therefore, a tree with n nodes has a logarithmic height
– Thus FIND can be done in O(log n) time.
– We will also see that INSERT and DELETE can be done in O(log n) time, while maintaining the AVL property.

h-1h-2
h
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Implementing AVL Trees
Node structure

Tree operations
(We'll want to be sure these operate in O(log n) worst case time.)
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An AVL Tree
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Track height at all times!
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10 key 
Node object AVL tree operations

• AVL find: 
– Same as BST find

• AVL insert: 
– First BST insert, then check balance and potentially “fix” the 

AVL tree
– Four different imbalance cases

• AVL delete: 
– The “easy way” is lazy deletion
– Otherwise, do the deletion and then check for several imbalance 

cases (we will skip this)
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Insert: detect potential imbalance
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the 

insertion may (or may not) have changed the node’s height
3. So after insertion in a subtree, detect height imbalance and 

perform a rotation to restore balance at that node
All the action is in defining the correct rotations to restore balance
Fact that an implementation can ignore:

– There must be a deepest element that is imbalanced after the 
insert (all descendants still balanced)

– After rebalancing this deepest node, every node is balanced
– So at most one node needs to be rebalanced
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Case #1: Example
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Insert(6)
Insert(3)
Insert(1)

Third insertion violates 
balance property
• happens to be at 

the root

What is the only way to 
fix this? 
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Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to rebalance

– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)
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The example generalized
• Insertion into left-left grandchild causes an imbalance

– 1 of 4 possible imbalance causes (other 3 coming up!)
• Creates an imbalance in the AVL tree (specifically a is imbalanced)
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The general left-left case
• So we rotate at a

– Move child of unbalanced node into parent position
– Parent becomes the “other” child
– Other sub-trees move in the only way BST allows: 

• using BST facts: X < b < Y < a < Z
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• A single rotation restores balance at the node
– To same height as before insertion, so ancestors now balanced
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Another example: insert(16)
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The general right-right case
• Mirror image to left-left case, so you rotate the other way

– Exact same concept, but need different code
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Two cases to go
Unfortunately, single rotations are not enough for insertions in the 

left-right subtree or the right-left subtree
Simple example:  insert(1), insert(6), insert(3)

– First wrong idea: single rotation like we did for left-left
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Violates order 
property!

Two cases to go
Unfortunately, single rotations are not enough for insertions in the 

left-right subtree or the right-left subtree
Simple example:  insert(1), insert(6), insert(3)

– Second wrong idea: single rotation on the child of the 
unbalanced node
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Still unbalanced!

Sometimes two wrongs make a right 
• First idea violated the order property
• Second idea didn’t fix balance
• But if we do both single rotations, starting with the second, it 

works!  (And not just for this example.)
• Double rotation: 

1. Rotate problematic child and grandchild
2. Then rotate between self and new child
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The general right-left case
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Comments
• Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:
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Easier to remember than you may think:
Move c to grandparent’s position
Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right
• Mirror image of right-left

– Again, no new concepts, only new code to write
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Insert, summarized
• Insert as in a BST
• Check back up path for imbalance, which will be 1 of 4 cases:

– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert
• After the appropriate single or double rotation, the smallest-

unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced
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Now efficiency
• Worst-case complexity of find: O(log n)

– Tree is balanced
• Worst-case complexity of insert: O(log n)

– Tree starts balanced
– A rotation is O(1) and there’s an O(log n) path to root
– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…
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Pros and Cons of AVL Trees
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Arguments for AVL trees:
1. All operations logarithmic worst-case because trees are always

balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete
Arguments against AVL trees:
1. Difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If “amortized” logarithmic time is enough, use “splay trees.”


