
1/16/2016

1

CSE373: Data Structures and Algorithms
Binary Search Trees

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Recall
– Dictionary ADT

• stores (key, value) pairs
• find, insert, delete

– Trees
• Terminology
• Binary Trees

2CSE 373 - Winter 2016

Reminder: Tree terminology

CSE 373 - Winter 2016 3

A

E
B

D F
C
G

IH

LJ MK N

Node / Vertex

Edges

Root

Leaves

Left subtree
Right subtree

Example Tree Calculations

CSE 373 - Winter 2016 4

A

E
B

D F
C
G

IH

LJ MK N

A

Recall: Height of a tree is the maximum
number of edges from the root to a leaf.

Height = 0
A

B Height = 1

What is the height of this tree?

What is the depth of node G?

What is the depth of node L?
Depth = 2

Depth = 4

Height = 4

Binary Trees

CSE 373 - Winter 2016 5

• Binary tree: Each node has at most 2 children (branching factor 2)
• Binary tree is• A root (with data)• A left subtree (may be empty) • A right subtree (may be empty)
• Special Cases

Tree Traversals
A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+
*

2 4
5

(an expression tree)

6CSE 373 - Winter 2016

+ * 2 4 5

2 * 4 + 5

2 4 * 5 +

1/16/2016

2

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

7CSE 373 - Winter 2016

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

8CSE 373 - Winter 2016

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

9CSE 373 - Winter 2016

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

10CSE 373 - Winter 2016

✓

D

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

11CSE 373 - Winter 2016

✓

✓

D B

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

12CSE 373 - Winter 2016

✓

✓ ✓

D B E

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

1/16/2016

3

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

13CSE 373 - Winter 2016

✓

✓ ✓

✓

= current node = processing
(on the call stack)

= completed node = element has been
processed

A A
A ✓

D B E A

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

14CSE 373 - Winter 2016

✓

✓ ✓

✓

= current node = processing
(on the call stack)

= completed node = element has been
processed

A A
A ✓

D B E A

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

15CSE 373 - Winter 2016

✓

✓ ✓

✓

✓

✓

D B E A F C

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

16CSE 373 - Winter 2016

✓

✓ ✓

✓

✓

✓ ✓

D B E A F C G

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

Sometimes order doesn’t matter
• Example: sum all elements

Sometimes order matters
• Example: evaluate an expression tree

A

B

D E

C

F G

17CSE 373 - Winter 2016

A

B

D E

C

F G

✓

✓ ✓

✓

✓

✓ ✓

Binary Search Tree (BST) Data Structure

4

121062

115

8

14

13

7 9

• Structure property (binary tree)
– Each node has  2 children
– Result: keeps operations simple

• Order property
– All keys in left subtree smaller

than node’s key
– All keys in right subtree larger

than node’s key
– Result: easy to find any given key

18CSE 373 - Winter 2016

A binary search tree is a type of binary tree
(but not all binary trees are binary search trees!)

1/16/2016

4

Are these BSTs?

3

1171

84

5

4

181062

115

8

20
21

7

15

19CSE 373 - Winter 2016

Activity!

Find in BST, Recursive

2092

155

12

307 1710

Data find(Key key, Node root){if(root == null)return null;if(key < root.key)return find(key,root.left);if(key > root.key)return find(key,root.right);return root.data;}

20CSE 373 - Winter 2016

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)

321 4

What is the running time?

Find in BST, Iterative

2092

155

12

307 1710

Data find(Key key, Node root){while(root != null&& root.key != key) {if(key < root.key)root = root.left;else(key > root.key)root = root.right;}if(root == null)return null;return root.data;}

21CSE 373 - Winter 2016

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)

Bonus: Other BST “Finding” Operations

• FindMin: Find minimum node
– Left-most node

• FindMax: Find maximum node
– Right-most node 2092

155
12

307 1710

22CSE 373 - Winter 2016

Insert in BST

2092

155

12

307 17

insert(13)
insert(8)
insert(31)

(New) insertions
happen only at leaves –
easy!

10

8 31

13

23CSE 373 - Winter 2016

Again… worst case running time is O(n), which
may happen if the tree is not balanced.

Deletion in BST

2092

155

12

307 17

Why might deletion be harder than insertion?
10

24CSE 373 - Winter 2016

Removing an item may disrupt the tree structure!

1/16/2016

5

Deletion in BST
• Basic idea: find the node to be removed, then

“fix” the tree so that it is still a binary search tree

• Three potential cases to fix:
– Node has no children (leaf)
– Node has one child
– Node has two children

25CSE 373 - Winter 2016

Deletion – The Leaf Case

2092

155

12

307 17

delete(17)

10

26CSE 373 - Winter 2016

Deletion – The One Child Case

2092

155

12

307 10

27CSE 373 - Winter 2016

delete(15)

Deletion – The One Child Case

2092

5

12

307 10

28CSE 373 - Winter 2016

delete(15)

Deletion – The Two Child Case

3092

205

12

7

What can we replace 5 with?

10

29CSE 373 - Winter 2016

delete(5)

4

Deletion – The Two Child Case
Idea: Replace the deleted node with a value guaranteed to be

between the two child subtrees

Options:
• successor minimum node from right subtreefindMin(node.right)

• predecessor maximum node from left subtreefindMax(node.left)

Now delete the original node containing successor or predecessor

30CSE 373 - Winter 2016

1/16/2016

6

Deletion: The Two Child Case (example)

31CSE 373 - Winter 2016

3092

235

12

7 10

18
1915 3225

delete(23)

Deletion: The Two Child Case (example)

32CSE 373 - Winter 2016

3092

235

12

7 10

18
1915 3225

delete(23)

Deletion: The Two Child Case (example)

33CSE 373 - Winter 2016

3092

195

12

7 10

18
1915 3225

delete(23)

Deletion: The Two Child Case (example)

34CSE 373 - Winter 2016

3092

195

12

7 10

18

15 3225

Success! 

delete(23)

Lazy Deletion
• Lazy deletion can work well for a BST

– Simpler
– Can do “real deletions” later as a batch
– Some inserts can just “undelete” a tree node

• But
– Can waste space and slow down find operations
– Make some operations more complicated:

• e.g., findMin and findMax?

35CSE 373 - Winter 2016

BuildTree for BST
• Let’s consider buildTree

– Insert all, starting from an empty tree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

– If inserted in given order,
what is the tree?

– What big-O runtime for
this kind of sorted input?

– Is inserting in the reverse order
any better?

1
2

3(n2)
Not a happy place

36CSE 373 - Winter 2016

1/16/2016

7

BuildTree for BST
• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
• What we if could somehow re-arrange them

– median first, then left median, right median, etc.
– 5, 3, 7, 2, 1, 4, 8, 6, 9

– What tree does that give us?
– What big-O runtime?

842

73

5

9

6

1

O(n log n), definitely better

37CSE 373 - Winter 2016

