
1/15/2016

1

CSE373: Data Structures and Algorithms
Dictionaries and Binary Search Trees

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Today’s Outline
Today’s Topics
• Finish Asymptotic Analysis
• Dictionary ADT (a.k.a. Map): associate keys with values

– Extremely common
• Binary Trees

Winter 2016 2CSE 373 Algorithms and Data Structures

Summary of Asymptotic Analysis
Analysis can be about:
• The problem or the algorithm (usually algorithm)
• Time or space (usually time)

– Or power or dollars or …
• Best-, worst-, or average-case (usually worst)
• Upper-, lower-, or tight-bound (usually upper)

• The most common thing we will do is give an O upper bound to
the worst-case running time of an algorithm.

Winter 2016 3CSE 373 Algorithms and Data Structures

Big-Oh Caveats
• Asymptotic complexity focuses on behavior for large n and is

independent of any computer / coding trick
• But you can “abuse” it to be misled about trade-offs
• Example: n1/10 vs. log n

– Asymptotically n1/10 grows more quickly
– But the “cross-over” point is around 5 * 1017
– So if you have input size less than 258, prefer n1/10

• For small n, an algorithm with worse asymptotic complexity
might be faster
– If you care about performance for small n then the constant

factors can matter

Winter 2016 4CSE 373 Algorithms and Data Structures

Addendum: Timing vs. Big-Oh Summary
• Big-oh is an essential part of computer science’s mathematical

foundation
– Examine the algorithm itself, not the implementation
– Reason about (even prove) performance as a function of n

• Timing also has its place
– Compare implementations
– Focus on data sets you care about (versus worst case)
– Determine what the constant factors “really are”

Winter 2016 5CSE 373 Algorithms and Data Structures

Let’s take a breath
• So far we’ve covered

– Some simple ADTs: stacks, queues, lists
– Some math (proof by induction)
– How to analyze algorithms
– Asymptotic notation (Big-Oh)

• Coming up….
– Many more ADTs

• Starting with dictionaries

Winter 2016 6CSE 373 Algorithms and Data Structures

1/15/2016

2

The Dictionary (a.k.a. Map) ADT
• Data:

– set of (key, value) pairs
– keys must be comparable

• Operations:
– insert(key,value)
– find(key)
– delete(key)
– …

• david
David Swanson
OH: Wed 3.30-4.20
…

• nicholas
Nicholas Shahan
OH: Wed 11.30-12.20
…

• megan
Megan Hopp
OH: Mon 10-10.50
…

insert(david, ….)

find(megan)
Megan Hopp, …

Will tend to emphasize the keys;
don’t forget about the stored values

Winter 2016 7CSE 373 Algorithms and Data Structures

A Modest Few Uses
Any time you want to store information according to some key and

be able to retrieve it efficiently
– Lots of programs do that!

• Search: inverted indexes, phone directories, …
• Networks: router tables
• Operating systems: page tables
• Compilers: symbol tables
• Databases: dictionaries with other nice properties
• Biology: genome maps
• …

Possibly the most widely used ADT

Winter 2016 8CSE 373 Algorithms and Data Structures

Simple implementations
For dictionary with n key/value pairs

insert find delete
• Unsorted linked-list

• Unsorted array

• Sorted linked list

• Sorted array
* Unless we need to check for duplicates
We’ll see a Binary Search Tree (BST) probably does better

but not in the worst case (unless we keep it balanced)
Winter 2016 9CSE 373 Algorithms and Data Structures

O(1)* O(n) O(n)
O(n) O(n)

O(n) O(n) O(n)
O(1)*

O(n) O(n) O(log n)

Lazy Deletion

A general technique for making delete as fast as find:
– Instead of actually removing the item just mark it deleted

Plusses:
– Simpler
– Can do removals later in batches
– If re-added soon thereafter, just unmark the deletion

Minuses:
– Extra space for the “is-it-deleted” flag
– Data structure full of deleted nodes wastes space
– May complicate other operations

Winter 2016 10CSE 373 Algorithms and Data Structures

10 12 24 30 41 42 44 45 50
        

Better dictionary data structures
There are many good data structures for (large) dictionaries
1. Binary trees
2. AVL trees

– Binary search trees with guaranteed balancing
3. Hashtables

– Not tree-like at all
Skipping: Other trees (e.g., B-trees, red-black, splay)

Winter 2016 11CSE 373 Algorithms and Data Structures

Tree terms (review?)

Winter 2016 12CSE 373 Algorithms and Data Structures

A

E
B

D F
C
G

IH

LJ MK N

Tree T

Root (tree)
Leaves (tree)
Children (node)
Parent (node)
Siblings (node)
Ancestors (node)
Descendents (node)
Subtree (node)

Depth (node)
Height (tree)
Degree (node)
Branching factor (tree)

1/15/2016

3

More tree terms
• There are many kinds of trees

– Every binary tree is a tree
– Every list is kind of a tree (think of “next” as the one child)

• There are many kinds of binary trees
– Every binary search tree is a binary tree
– Later: A binary heap is a different kind of binary tree

• A tree can be balanced or not
– A balanced tree with n nodes has a height of O(log n)
– Different tree data structures have different “balance

conditions” to achieve this

Winter 2016 13CSE 373 Algorithms and Data Structures

Kinds of trees
Certain terms define trees with specific structure
• Binary tree: Each node has at most 2 children (branching factor 2)
• n-ary tree: Each node has at most n children (branching factor n)
• Perfect tree: Each row completely full
• Complete tree: Each row completely full except maybe the bottom

row, which is filled from left to right

Winter 2016 14CSE 373 Algorithms and Data Structures

What is the height of a perfect binary tree with n nodes?
A complete binary tree?

Binary Trees
• Binary tree: Each node has at most 2 children (branching factor 2)
• Binary tree is

– A root (with data)
– A left subtree (may be empty)
– A right subtree (may be empty)

• Representation:

A

B

D E

C

F

HG

JI

Data
right

pointer
left

pointer
• For a dictionary, data will include a key and a value

Winter 2016 15CSE 373 Algorithms and Data Structures

Binary Tree Representation

Winter 2016 16CSE 373 Algorithms and Data Structures

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

2h

2(h + 1) - 1
1
h + 1

For n nodes, we cannot do better than O(log n)
height and we want to avoid O(n) height

Winter 2016 17CSE 373 Algorithms and Data Structures

Calculating height
What is the height of a tree with root root?

Winter 2016 18CSE 373 Algorithms and Data Structures

int treeHeight(Node root) {
???

}

1/15/2016

4

Calculating height
What is the height of a tree with root root?

Winter 2016 19CSE 373 Algorithms and Data Structures

int treeHeight(Node root) {
if(root == null)

return -1;
return 1 + max(treeHeight(root.left),

treeHeight(root.right));
}

Running time for tree with n nodes: O(n) – single pass over tree
Note: non-recursive is painful – need your own stack of pending

nodes; much easier to use recursion’s call stack

Tree Traversals
A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree
+ * 2 4 5

• In-order: left subtree, root, right subtree
2 * 4 + 5

• Post-order: left subtree, right subtree, root
2 4 * 5 +

+
*

2 4
5

(an expression tree)

Winter 2016 20CSE 373 Algorithms and Data Structures

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 21CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 22CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 23CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 24CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

✓

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

1/15/2016

5

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 25CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

✓

✓

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 26CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓

✓ ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 27CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓

✓ ✓

✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 28CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓

✓ ✓

✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 29CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓

✓ ✓

✓

✓

✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

Winter 2016 30CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓

✓ ✓

✓

✓

✓ ✓

