
CSE373: Data Structures and Algorithms

Lecture 2: Math Review; Algorithm Analysis

Hunter Zahn
Summer 2016

Today

•  Finish discussing stacks and queues

•  Review math essential to algorithm analysis
–  Proof by induction
–  Powers of 2
–  Binary numbers
–  Exponents and logarithms

•  Begin analyzing algorithms
–  Using asymptotic analysis (continue next time)

Summer 2016 2 CSE373: Data Structures & Algorithms

Prove that 1 + 2 + 4 + 8 + … + 2n = 2n+1-1

Summer 2016 3 CSE373: Data Structures & Algorithms

Background on Induction

•  Type of mathematical proof
•  Typically used to establish a given statement for all natural

numbers (integers > 0)
•  Proof is a sequence of deductive steps

1.  Show the statement is true for the first number.
2.  Show that if the statement is true for any one number, this

implies the statement is true for the next number.
3.  If so, we can infer that the statement is true for all

numbers.

4 Summer 2016 CSE373: Data Structures & Algorithms

Think about climbing a ladder

5

1. Show you can get to the first
rung (base case)

2. Show you can get between
rungs (inductive step)

3. Now you can climb forever.

Summer 2016 CSE373: Data Structures & Algorithms

5 steps to inductive proofs
1.  State what you’re trying to prove.

–  Suppose that P(n) is some predicate (mention n)
–  Ex:

 “Let P(n) be …
 Will prove that P(n) is true for every n >= x”

2.  Prove the “base case”
–  Show that P(x) is true

3.  Inductive Hypothesis (IH)
–  Assume that P(k) is true for some arbitrary integer k in the

set of integers you’re looking at
4.  Inductive Step

–  Show that P(k + 1) is true.
–  Be sure to use the Inductive Hypothesis, and point out where

you use it!
5.  Conclusion

Summer 2016 6 CSE373: Data Structures & Algorithms

Why you should care

•  Induction turns out to be a useful technique
–  AVL trees
–  Heaps
–  Graph algorithms
–  Can also prove things like 3n > n3 for n ≥ 4

•  Exposure to rigorous thinking

7 Summer 2016 CSE373: Data Structures & Algorithms

Prove that 1 + 2 + 4 + 8 + … + 2n = 2n+1-1

Summer 2016 8 CSE373: Data Structures & Algorithms

Example

P(n) = “the sum of the first n powers of 2 (starting at 0) is 2n-1”

Theorem: P(n) holds for all n ≥ 1
Proof: By induction on n
•  Base case: n=1. Sum of first 1 power of 2 is 20 , which equals 1.

 And for n=1, 2n-1 equals 1.
•  Inductive case:

–  Assume the sum of the first k powers of 2 is 2k-1
–  Show the sum of the first (k+1) powers of 2 is 2k+1-1
Using assumption, sum of the first (k+1) powers of 2 is
(2k-1) + 2(k+1)-1 = (2k-1) + 2k = 2k+1-1

Summer 2016 9 CSE373: Data Structures & Algorithms

Powers of 2

•  A bit is 0 or 1 (just two different “letters” or “symbols”)
•  A sequence of n bits can represent 2n distinct things

–  For example, the numbers 0 through 2n-1
•  210 is 1024 (“about a thousand”, kilo in CSE speak)
•  220 is “about a million”, mega in CSE speak
•  230 is “about a billion”, giga in CSE speak

Java: an int is 32 bits and signed, so “max int” is “about 2 billion”
 a long is 64 bits and signed, so “max long” is 263-1

Summer 2016 10 CSE373: Data Structures & Algorithms

Therefore…

Could give a unique id to…

•  Every person in the U.S. with 29 bits

•  Every person in the world with 33 bits

•  Every person to have ever lived with 38 bits (estimate)

•  Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated,
 do you think you could guess it?

 Summer 2016 11 CSE373: Data Structures & Algorithms

Logarithms and Exponents

•  Since so much is binary login CS almost always means log2
•  Definition: log2 x = y if x = 2y

•  So, log2 1,000,000 = “a little under 20”
•  Just as exponents grow very quickly, logarithms grow very slowly

Summer 2016 12 CSE373: Data Structures & Algorithms

See Excel file
for plot data –
play with it!

Logarithms and Exponents

•  Since so much is binary log in CS almost always means log2
•  Definition: log2 x = y if x = 2y

•  So, log2 1,000,000 = “a little under 20”
•  Just as exponents grow very quickly, logarithms grow very slowly

Summer 2016 13 CSE373: Data Structures & Algorithms

See Excel file
for plot data –
play with it!

Logarithms and Exponents

•  Since so much is binary log in CS almost always means log2
•  Definition: log2 x = y if x = 2y

•  So, log2 1,000,000 = “a little under 20”
•  Just as exponents grow very quickly, logarithms grow very slowly

Summer 2016 14 CSE373: Data Structures & Algorithms

See Excel file
for plot data –
play with it!

Logarithms and Exponents

•  Since so much is binary log in CS almost always means log2
•  Definition: log2 x = y if x = 2y

•  So, log2 1,000,000 = “a little under 20”
•  Just as exponents grow very quickly, logarithms grow very slowly

Summer 2016 15 CSE373: Data Structures & Algorithms

See Excel file
for plot data –
play with it!

Properties of logarithms

•  log(A*B) = log A + log B
–  So log(Nk)= k log N

•  log(A/B) = log A – log B

•  log(log x) is written log log x
–  Grows as slowly as 22 grows quickly

•  (log x)(log x) is written log2x
–  It is greater than log x for all x > 2
–  It is not the same as log log x

Summer 2016 16 CSE373: Data Structures & Algorithms

y

Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”
–  And we are about to stop worrying about constant factors!
–  In particular, log2 x = 3.22 log10 x
–  In general,

 logB x = (logA x) / (logA B)

Summer 2016 17 CSE373: Data Structures & Algorithms

Floor and ceiling

Summer 2016 18 CSE373: Data Structures & Algorithms

⎣ ⎦X

⎡ ⎤X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2232.722.7 =−=−=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 2222.332.3 =−=−=

Floor and ceiling properties

Summer 2016 19 CSE373: Data Structures & Algorithms

⎣ ⎦
⎡ ⎤

⎣ ⎦ ⎡ ⎤ integer an is n ifnn/2n/23.
1XXX2.

XX1X1.

=+

+<≤

≤<−

Algorithm Analysis

As the “size” of an algorithm’s input grows
 (integer, length of array, size of queue, etc.):

–  How much longer does the algorithm take (time)
–  How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only
“which curve we are like”

Separate issue: Algorithm correctness – does it produce the right
answer for all inputs
–  Usually more important, naturally

Summer 2016 20 CSE373: Data Structures & Algorithms

Example

•  What does this pseudocode return?
 x := 0;
 for i=1 to N do
 for j=1 to i do
 x := x + 3;
 return x;

•  Correctness: For any N ≥ 0, it returns…

Summer 2016 21 CSE373: Data Structures & Algorithms

Example

•  What does this pseudocode return?
 x := 0;
 for i=1 to N do
 for j=1 to i do
 x := x + 3;
 return x;

•  Correctness: For any N ≥ 0, it returns 3N(N+1)/2
•  Proof: By induction on n

–  P(n) = after outer for-loop executes n times, x holds
 3n(n+1)/2

–  Base: n=0, returns 0
–  Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
 = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

Summer 2016 22 CSE373: Data Structures & Algorithms

Example

•  How long does this pseudocode run?
 x := 0;
 for i=1 to N do
 for j=1 to i do
 x := x + 3;
 return x;

•  Running time: For any N ≥ 0,
–  Assignments, additions, returns take “1 unit time”
–  Loops take the sum of the time for their iterations

•  So: 2 + 2*(number of times inner loop runs)
–  And how many times is that…

Summer 2016 23 CSE373: Data Structures & Algorithms

Example

•  How long does this pseudocode run?
 x := 0;
 for i=1 to N do
 for j=1 to i do
 x := x + 3;
 return x;

•  The total number of loop iterations is N*(N+1)/2
–  This is a very common loop structure, worth memorizing
–  Proof is by induction on N, known for centuries
–  This is proportional to N2 , and we say O(N2), “big-Oh of”

•  For large enough N, the N and constant terms are
irrelevant, as are the first assignment and return

•  See plot… N*(N+1)/2 vs. just N2/2

Summer 2016 24 CSE373: Data Structures & Algorithms

Lower-order terms don’t matter

N*(N+1)/2 vs. just N2/2

Summer 2016 25 CSE373: Data Structures & Algorithms

Geometric interpretation

∑ i = N*N/2+N/2

for i=1 to N do
 for j=1 to i do
 // small work

Summer 2016 26 CSE373: Data Structures & Algorithms

N

i=1

•  Area of square: N*N
•  Area of lower triangle of square: N*N/2
•  Extra area from squares crossing the diagonal: N*1/2
•  As N grows, fraction of “extra area” compared to lower triangle

goes to zero (becomes insignificant)

Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n) “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is any constant)
O(kn) exponential (where k is any constant > 1)

Note: “exponential” does not mean “grows really fast”, it means
“grows at rate proportional to kn for some k>1”
–  A savings account accrues interest exponentially (k=1.01?)
–  If you don’t know k, you probably don’t know it’s exponential

Summer 2016 27 CSE373: Data Structures & Algorithms

Announcements
•  TA office hours have been decided

–  Held at the 4th floor breakouts in CSE
•  Whiteboard area near the stairs/elevator

•  HW1 released
–  Due Friday, July 2 at 11:00PM
–  See late day policy

•  Optional *section* Thursdays 2:00 – 3:00pm
–  Room TBD
–  Getting started on HW1, Induction, Eclipse
–  Bring Questions!
–  Materials will be posted online

Summer 2016 28 CSE373: Data Structures & Algorithms

