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CSE 373 PRACTICE FINAL EXAM
Two Double-Sided 8.5 x 11 Crib Sheets Allowed

1. For each of the following applications, choose the best structure from the following list. If
some other structure may also be a good choice, list it after the best one.

• linked list

• stack

• queue

• AVL tree

• B+-tree

• hash table

• binary min-heap

• adjacency matrix

• adjacency list

• union-find (up-tree) structure

(a) A structure, which can be easily updated, for keeping track of which students went to
the same high school.

(b) A structure for storing the nodes with no more incoming edges in a topological sort
algorithm.

(c) A structure that allows rapid access to all nodes adjacent to a given one in a graph
without going through every node.

(d) A structure that has multiple keys per node and log N levels.
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2. Give the time complexity of each of the following in Big-Oh notation, assuming worst-case
unless otherwise specified:

(a) Producing an ordering of nodes in a directed acyclic graph such that each node comes
after all its “prerequisite” nodes.

(b) Finding the correct leaf node to search in a B+-tree.

(c) Finding a key in a hash table that uses chaining.

(d) Finding the minimal cost paths from a start node to all other nodes in a digraph using
the most efficient algorithm known.

(e) Performing the union operation on two sets after performing the two finds.

(f) Deleting a key from a min-heap.

(g) Removing an item from a queue implemented with a circular array.
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3. Show how to insert the following sequence of keys into an initially empty AVL tree. Show
each step and show all separate rebalancing operations. The sequence is: 5, 4, 3, 2, 1

Insert 5 Insert 4

Insert 3 Insert 2

Insert 1

4. Show how to insert the same 5 elements into an empty min-heap, starting with an array, using
the efficient BuildHeap. First convert the initial array 5 4 3 2 1 to its tree form. Then show
each step in the BuildHeap procedure with trees. Finally, convert back to an array.
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5. Show how to insert the following sequence into an initially empty B+-tree that has a max of
2 keys (and 3 pointers) per interior node and 2 keys per leaf. Show the tree at each step. 45,
61, 32, 89, 100, 2, 6
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6. Show how to insert the following keys into an initially empty hash table of size 7 with indexes
0-6 using the hash function h(i) = i % 7: 49, 8, 7, 42, 48, 35

(a) with chaining (just show the final result and insert at the front of the lists)

(b) with linear probing (show each of the 6 steps horizontally).

(c) with quadratic probing (show each of the 6 steps horizontally) and indicate if it cannot
insert.
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7. Given the following weighted digraph:
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(a) Starting at node a, list the nodes in the order of a depth-first traversal (when there is a
choice, choose the smaller-lettered node first).

(b) Starting at node a, list the nodes in the order of a breadth-first traversal (when there is
a choice, choose the smaller-lettered node first).

(c) Show how the Dijkstra algorithm finds the shortest path from node a to all other nodes.
At each step, show what node is selected, what gets changed, and the distance on each
node. If there is a tie, choose alphabetically.

Step Selected a b c d e

1 a 0 ∞ ∞ ∞ ∞
2

3

4

5
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8. Given the following weighted, undirected graph:
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Use the Kruskal algorithm to find a minimal spanning tree of the graph. At each step, list
the chosen edge, explain any that are considered but not chosen, and show the changes to
the tree in progress. The last step would show the finished tree.

Step 1. Edge Chosen Tree in Progress

Step 2. Edge Chosen Tree in Progress

Step 3. Edge Chosen Tree in Progress

Step 4. Edge Chosen Tree in Progress
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9. Given the following small digraph GA = (VA, EA) and larger digraph GB = (VB, EB), find
a subgraph isomorphism from VA to VB. Veryify that your mapping is indeed a subgraph
isomorphism by checking each edge. Show all your work. You only need to do it for one
isomorphism if there are several.

Your answer is ONE ISOMORPHISM expressed as 4 pairs (no tree needed) and 4 edge checks
worked out.

1 2

3 4

a b

c d

e f
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10. Given the following unsorted array:

0 1 2 3 4 5 6 7

| 8 | 57 | 2 | 24 | 100 | 28 | 95 | 1 |

(a) Show how it would be sorted by QuickSort with pivot 24. (Just the top level, no recursive
calls.) Show each swap and resulting array.

(b) Now sort each of the two sides using Insertion Sort, showing each step and the final
result.
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11. A binary tree is implemented with a TreeNode class that has the following public members.

public class TreeNode {

public int value;

public TreeNode left;

public TreeNode right;

...

}

Write a recursive function CopyTree(TreeNode root) that is given a reference to the root of
a (possibly empty - represented as null) binary tree to be copied. It should build and return
a reference to the root of a duplicate copy of the tree. You may use the default constructor
for the TreeNode class to build new TreeNodes.

public TreeNode CopyTree(TreeNode root) {
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