
CSE 373 Spring 2016: Midterm Review List
One 8.5” × 11” Page (Double-Sided) of Notes Allowed

1. Mathematical Foundations: Be able to give a proof by mathematical induction that a given
function or procedure performs correctly based on induction with respect to some integer
variable, say n or size or height. The variable, in cases of our data structures, will be either
the length of a list or array, the number of nodes in a tree, or the height of a binary tree.

2. Complexity

• Given a function f(n), be able to prove that it is O(g(n)) by using the formal definition
and finding an appropriate c and n0.

• Be able to perform an analysis of a given algorithm to determine the “number of state-
ments executed” T (n) by the algorithm for some given number of inputs n. Be able to
convert this result to Big-O notation. Be able to analyze either iterative or recursive
procedures. (You will not need to formally solve recurrence relations.)

• Be able to compare the time complexities of various standard algorithms using Big-O
notation.

3. Lists, Stacks, and Queues

• Be familiar with the basic operations for lists, stacks, and queues; be able to use them
as needed.

• Be able to compare the algorithms for these operations with respect to sequential and
linked implementations. Comparisons can be about what they do, the time complexity,
and the required space.

• Be able to write or analyze the complexity of recursive or nonrecursive procedures dealing
with linear structures.

4. Trees

• Be familiar with the abstract operations for binary search trees. Be able to use them as
needed or to show what they do to a given tree.

• Be able to write simple recursive or iterative functions that operate on general trees,
plain binary trees, or binary search trees.

• Be able to compute balance factors for the nodes of binary search trees.

• Be able to show how the Insert operation works on an AVL tree, including the rebalancing
operations for the 4 different cases.

• Be able to show how to insert into B+-trees, particularly 2-3 trees.

• Be able to explain the time complexity of any of the above algorithms.

5. Priority Queues as Heaps

• Be able to show how insert and deleteMin work for binary heaps.

• Be able to show how the buildHeap operation works, given some data in an array.

1



• Be able to explain the time complexity of these algorithms

6. Union Find and Up-Trees

• Be able to show how union and find work

(a) for standard union where the second argument tree is hooked on to the root of the
first

(b) for union-by-size

(c) for find with path-compression

7. General:

• Be able to give short answers to questions about the structures and concepts we have
covered.

• Be able to write short code segments to do operations on the different structures we
have studied

2


