

CSE373: Data Structures & Algorithms Lecture 9: Priority Queues and Binary Heaps

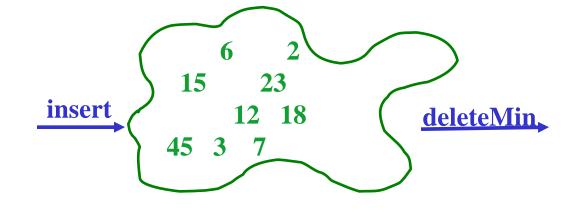
Linda Shapiro Spring 2016

A new ADT: Priority Queue

- A priority queue holds compare-able data
 - Like dictionaries, we need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the *priority* and the *data*

Priorities

- Each item has a "priority"
 - In our examples, the *lesser* item is the one with the *greater* priority
 - So "priority 1" is more important than "priority 4"
 - (Just a convention, think "first is best")
- Operations:
 - insert
 - deleteMin
 - is_empty



- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

CSE373: Data Structures & Algorithms

insert x1 with priority 5
insert x2 with priority 3
insert x3 with priority 4
a = deleteMin // x2
b = deleteMin // x3
insert x4 with priority 2
insert x5 with priority 6
C = deleteMin // x4
d = deleteMin // x1

(x1,5) (x1,5) (x2,3) (x1,5) (x3,4) (x2,3) (x1,5) (x3,4) (x1,5)

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Winter 2016

Applications

Like all good ADTs, the priority queue arises often

- Sometimes blatant, sometimes less obvious
- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression
- Sort (first insert all, then repeatedly deleteMin)

Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for *n* data items
 - All times worst-case; assume arrays "have room"

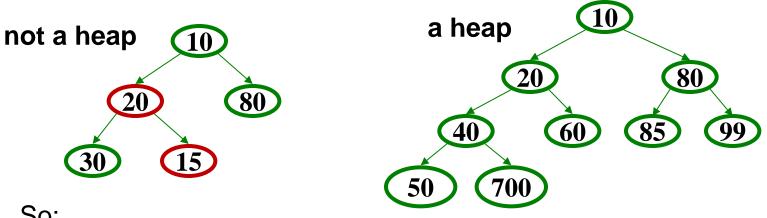
data	insert algorithm / tir	ne de	leteMin algorithr	n / time
unsorted array	add at end	<i>O</i> (1)	search	<i>O</i> (<i>n</i>)
unsorted linked list	add at front	<i>O</i> (1)	search	0(<i>n</i>)
sorted circular array	/ search / shift	<i>O</i> (<i>n</i>)	move front	<i>O</i> (1)
sorted linked list	put in right place	<i>O</i> (<i>n</i>)	remove at fron	t O(1)
binary search tree	put in right place	<i>O</i> (<i>n</i>)	leftmost	<i>O</i> (<i>n</i>)
AVL tree	put in right place	O(log n) leftmost O	(log <i>n</i>)

CSE373: Data Structures & Algorithms

Our data structure: the Binary Heap

A binary min-heap (or just binary heap or just heap) has:

- Structure property: A *complete* binary tree
- Heap property: The priority of every (non-root) node is less than the priority of its parent
 - Not a binary search tree



So:

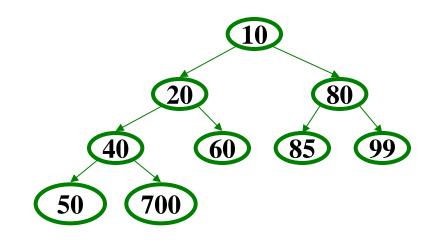
- Where is the most important item?
- What is the height of a heap with *n* items?

Operations: basic idea

- deleteMin:
 - 1. Remove root node
 - 2. Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap property

• insert:

- Put new node in next position on bottom row to restore structure property
- 2. "Percolate up" to restore heap property

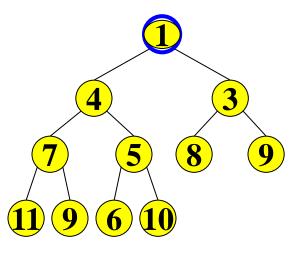


Overall strategy:

- Preserve structure property
- Break and restore heap property

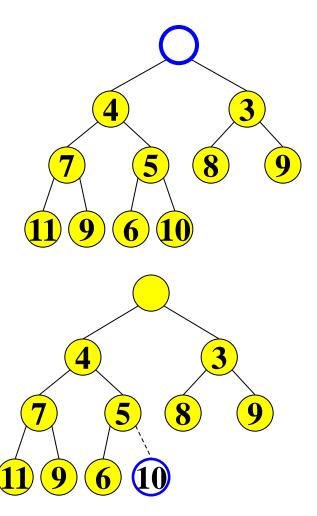
DeleteMin

Delete (and later return) value at root node



DeleteMin: Keep the Structure Property

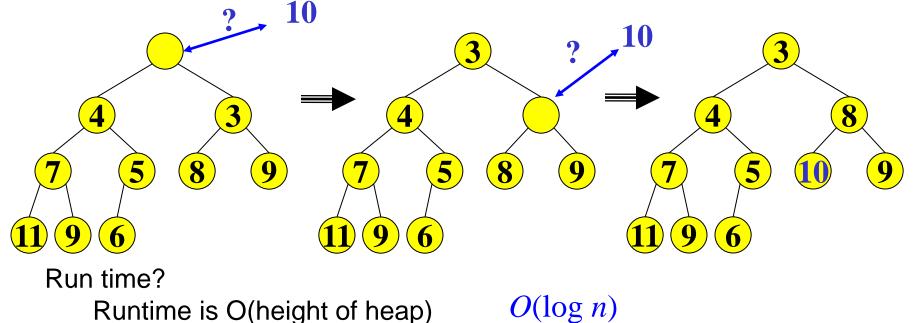
- We now have a "hole" at the root
 - Need to fill the hole with another value
- Keep structure property: When we are done, the tree will have one less node and must still be complete
- Pick the last node on the bottom row of the tree and move it to the "hole"



DeleteMin: Restore the Heap Property

Percolate down:

- Keep comparing priority of item with both children
- If priority is less important, swap with the most important child and go down one level
- Done if both children are less important than the item or we've reached a leaf node

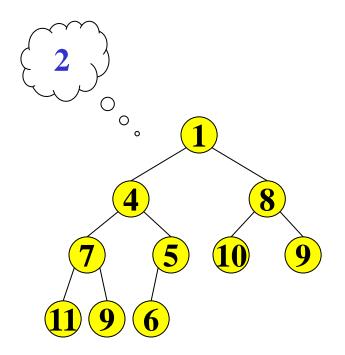


Height of a complete binary tree of *n* nodes = $\lfloor \log_2(n) \rfloor$

CSE 373 Data Structures & Algorithms

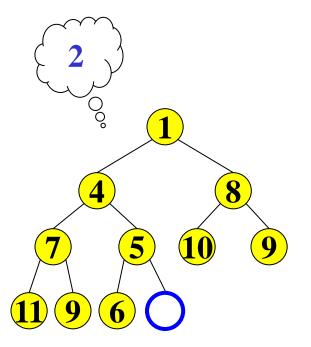
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct



Insert: Maintain the Structure Property

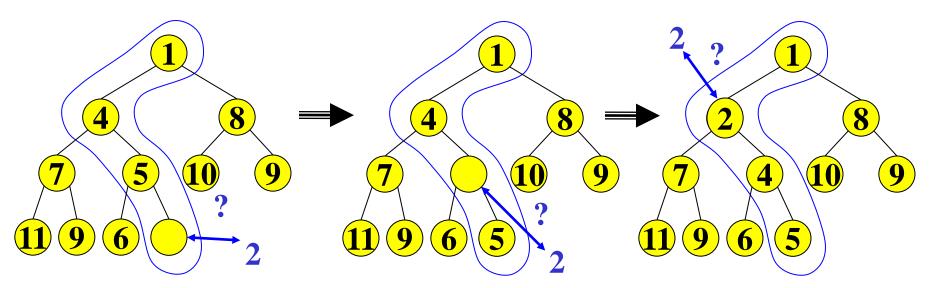
- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property



Insert: Restore the heap property

Percolate up:

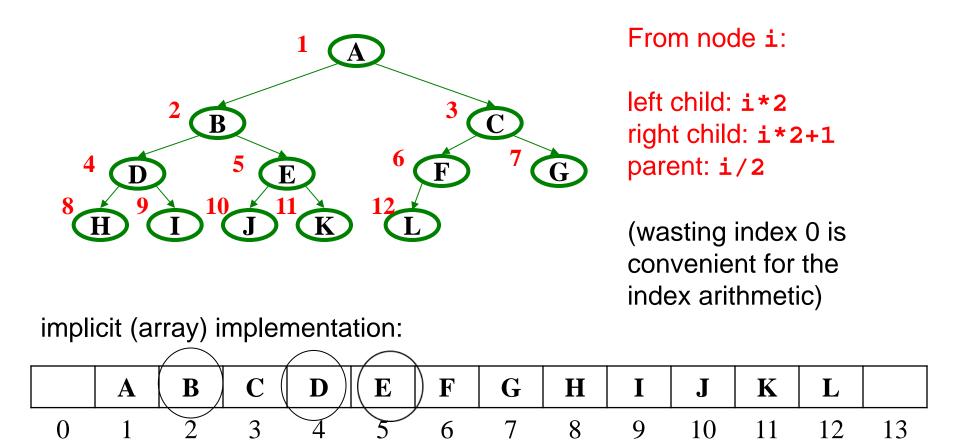
- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root



What is the running time? Like deleteMin, worst-case time proportional to tree height: O(log n)

CSE 373 Data Structures & Algorithms

Array Representation of Binary Trees



CSE 373 Data Strukfures & Algorithms

Judging the array implementation

Plusses:

- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so *n*-1 wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index **size**

Minuses:

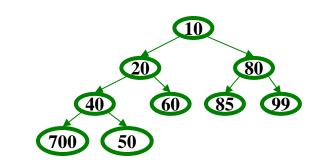
• Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

This pseudocode uses ints. In real use, you will have data nodes with priorities.

Pseudocode: insert into binary heap

```
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}
```



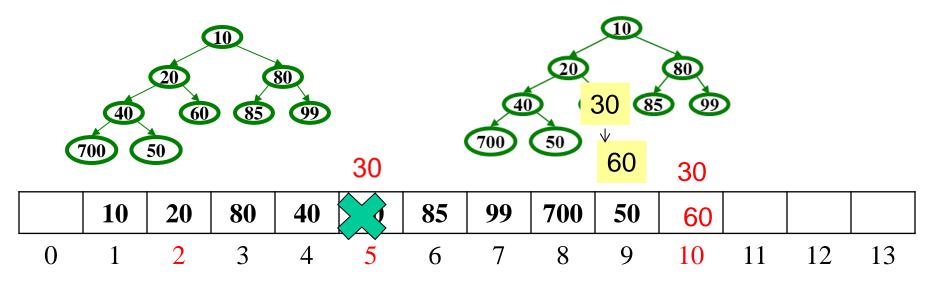
	10	20	80	40	60	85	99	700	50				
0	1	2	3	4	5	6	7	8	9	10	11	12	13

This pseudocode uses ints. In real use, you will have data nodes with priorities.

percolateUp(10, 30)

```
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}
```

insert(30)



Pseudocode: deleteMin from binary heap

```
int deleteMin() {
  if(isEmpty()) throw...
  ans = arr[1];
                                    left = 2*hole;
  hole = percolateDown
                                   right = left + 1;
                                    if(right > size |
            (1,arr[size]);
  arr[hole] = arr[size];
                                      target = left;
  size--;
                                   else
                                      target = right;
  return ans;
}
                                      hole = target;
              10
                                    } else
                   80
                                        break;
            60
                85
                     99
       40
                                  return hole;
    700
         50
                                    99
                                        700
      10
           20
                80
                     40
                          60
                               85
                                             50
           2
                3
                                         8
                                              9
  0
                     4
                          5
                               6
                                    7
                                                  10
                                                       11
       1
    Spring 2016
                       CSE 373 Data Structures & Algorithms
```

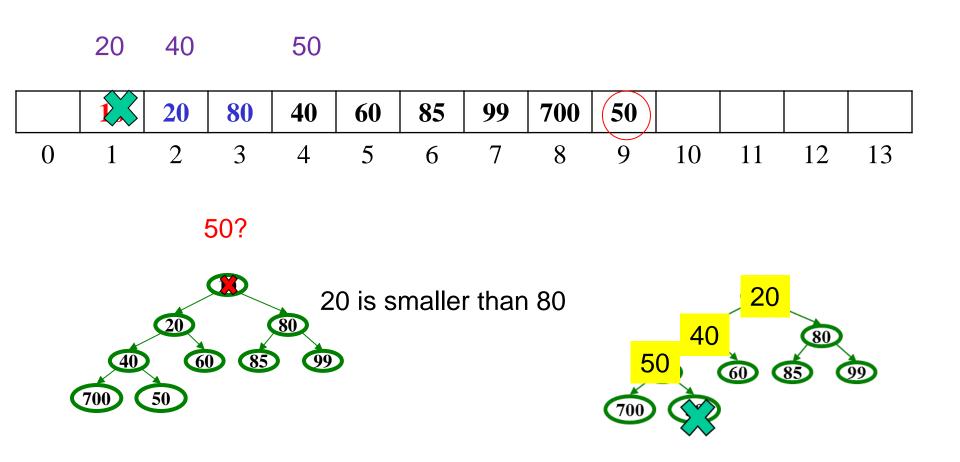
```
int percolateDown(int hole,
                     int val) {
while(2*hole <= size) {</pre>
     arr[left] < arr[right])</pre>
  if(arr[target] < val) {</pre>
    arr[hole] = arr[target];
```

12

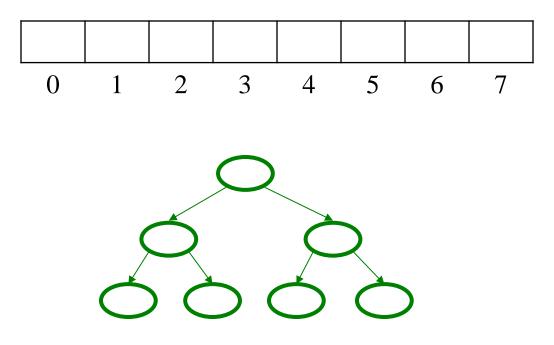
13

19

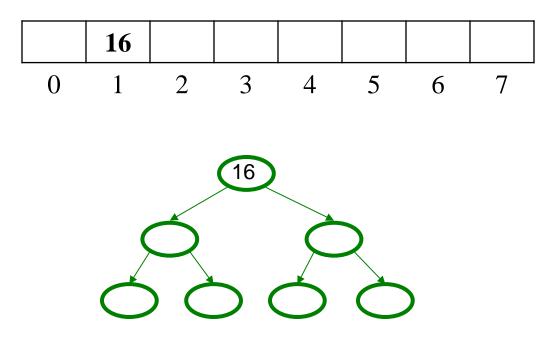
Pseudocode: deleteMin from binary heap



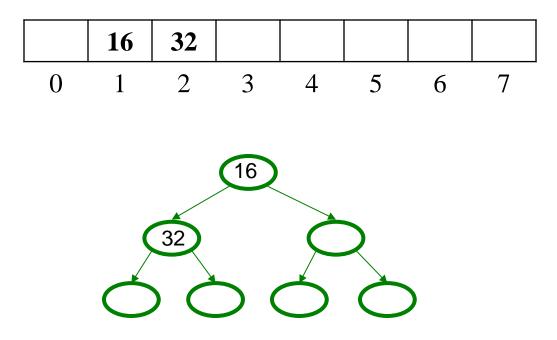
- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin



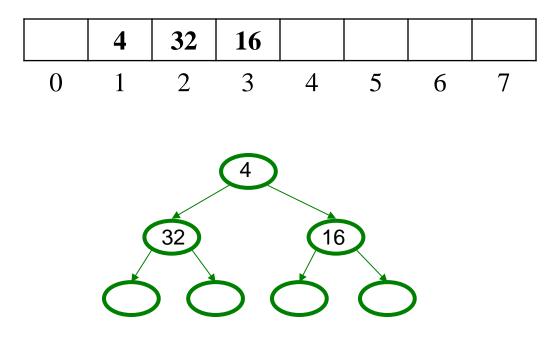
- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin



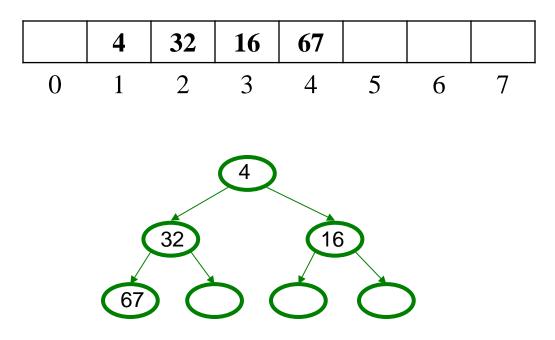
- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin



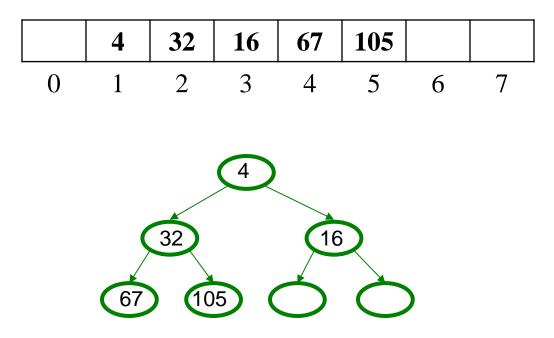
- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin



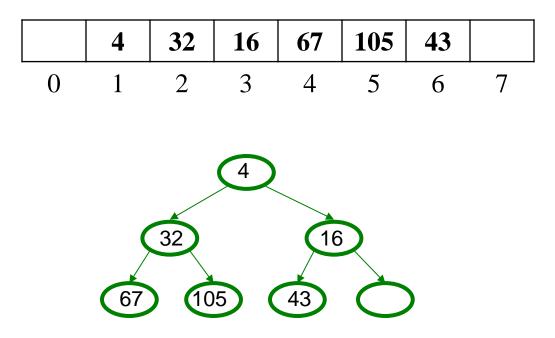
- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin



- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

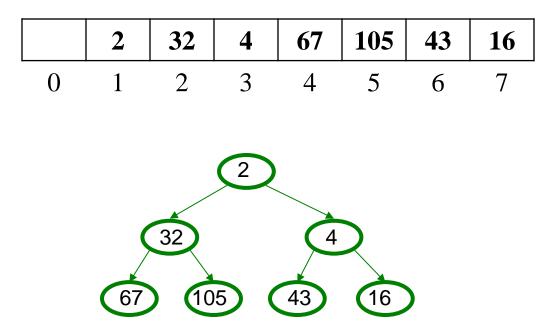


- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin



Exercise

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin



Other operations

- decreasekey: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up
- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by *p*
 - Change priority and percolate down
- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - decreaseKey with $p = \infty$, then deleteMin

Running time for all these operations?

Spring 2016

Build Heap

- Suppose you have *n* items to put in a new (empty) priority queue
 - Call this operation buildHeap
- *n* inserts works
 - Only choice if ADT doesn't provide buildHeap explicitly
 - $O(n \log n)$
- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an O(n) algorithm called Floyd's Method
 - Common issue in ADT design: how many specialized operations

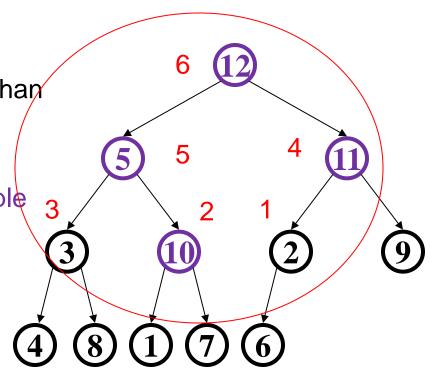
Floyd's Method

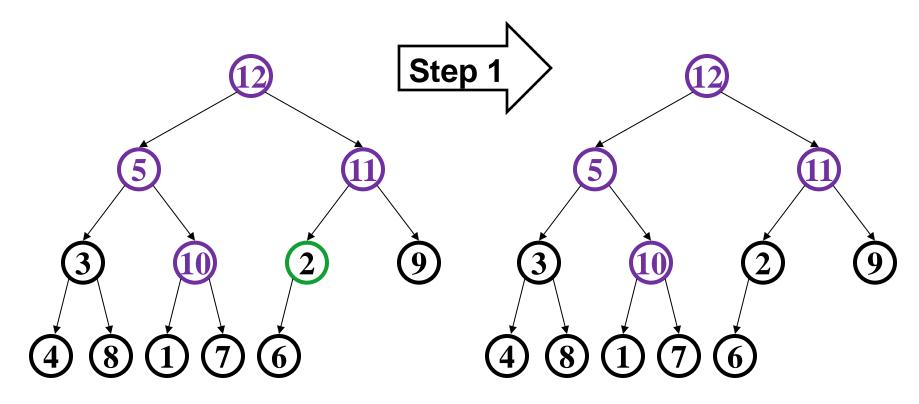
- 1. Use *n* items to make any complete tree you want
 - That is, put them in array indices 1,...,n
- 2. Treat it as a heap and fix the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

12/2 = 6

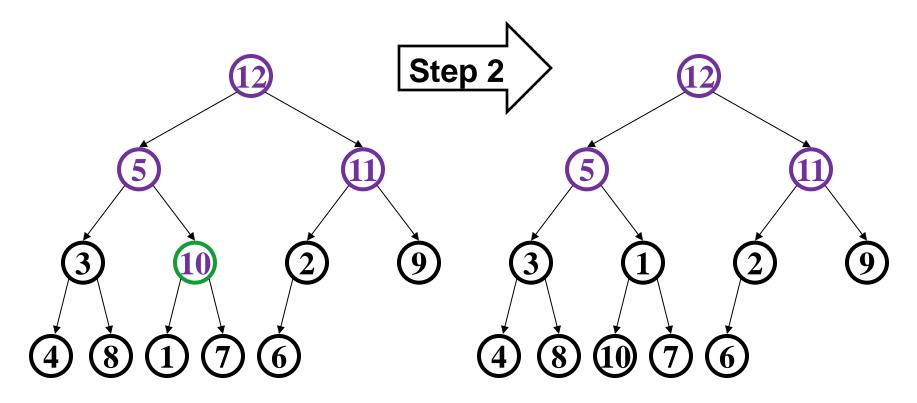
- In tree form for readability
 - Purple for node not less than descendants
 - heap-order problem
 - Notice no leaves are purple
 - Check/fix each non-leaf bottom-up (6 steps here)





• Happens to already be less than children (er, child)

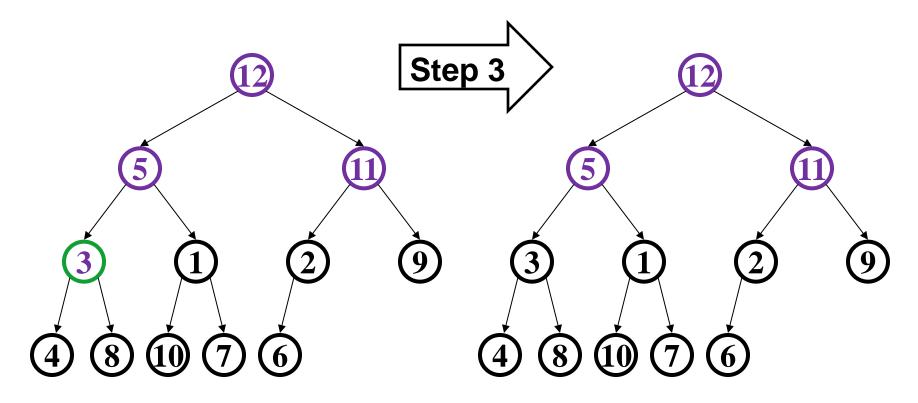
CSE 373 Data Structures & Algorithms



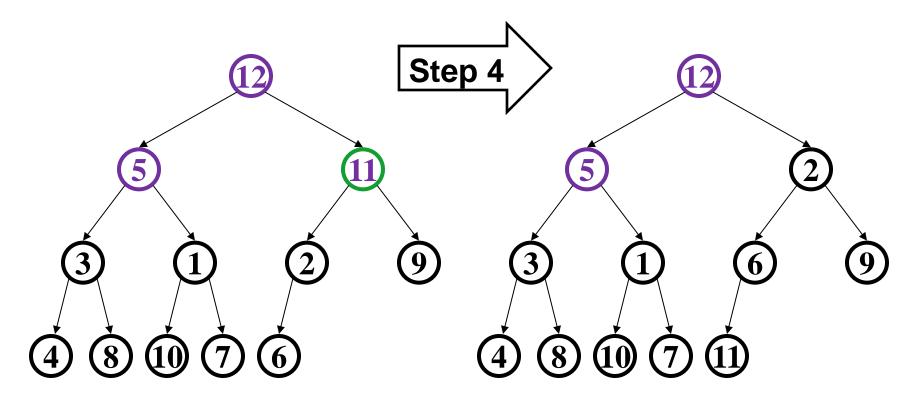
• Percolate down (notice that moves 1 up)

Spring 2016

CSE 373 Data Structures & Algorithms

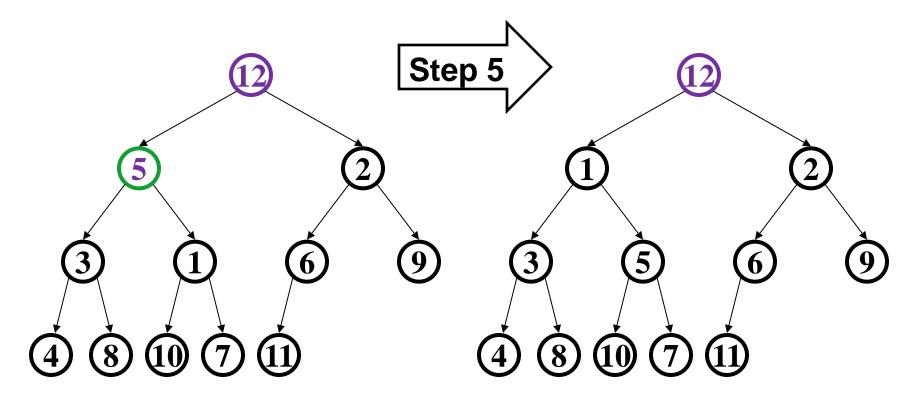


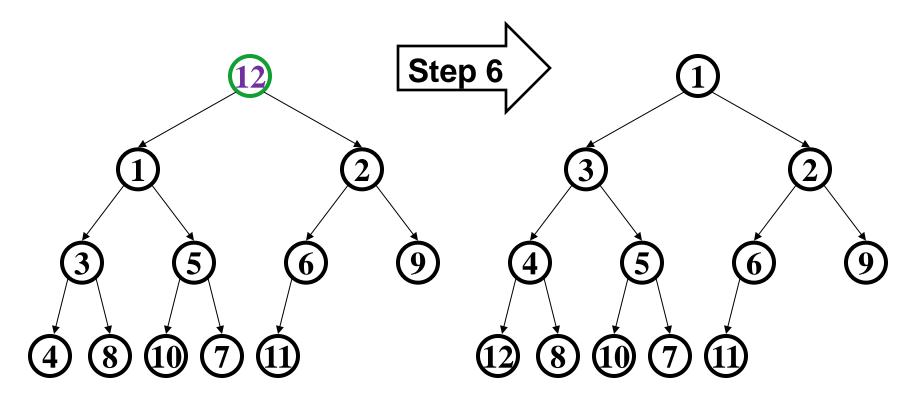
• Another nothing-to-do step



• Percolate down as necessary (steps 4a and 4b)

CSE 373 Data Structures & Algorithms





But is it right?

- "Seems to work"
 - Let's prove it restores the heap property (correctness)
 - Then let's prove its running time (efficiency)

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Loop Invariant: For all j>i, arr[j] is less than its children

- True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children

Spring 2016

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Easy argument: buildHeap is $O(n \log n)$ where n is size

- size/2 loop iterations
- Each iteration does one percolateDown, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Efficiency void buildHeap() { for(i = size/2; i>0; i--) { val = arr[i]; hole = percolateDown(i,val); arr[hole] = val; } }

Better argument: **buildHeap** is O(n) where *n* is **size**

- **size/2** total loop iterations: *O*(*n*)
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)

- So at most 2*(size/2) total percolate steps: O(n)

Spring 2016

CSE 373 Data Structures & Algorithms

Lessons from buildHeap

- Without buildHeap, our ADT already let clients implement their own in O(n log n) worst case
- By providing a specialized operation internal to the data structure (with access to the internal data), we can do O(n) worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness:
 - Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was O(n log n)
 - Tighter analysis shows same algorithm is O(n)

Exercise: Build the Heap using Floyd's method

3	9	2	6	25	1	80	35
1	2	3	4	5	6	7	8

