

CSE373: Data Structures & Algorithms Lecture 8: AVL Trees and Priority Queues

Linda Shapiro Spring 2016

Announcements

- Homework 3 is out.
- Today
 - Finish AVL Trees
 - Start Priority Queues

The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties

- 1. Binary tree property (same as BST)
- 2. Order property (same as for BST)
- 3. Balance property:

balance of every node is between -1 and 1

Need to keep track of height of every node and maintain balance as we perform operations.

AVL Trees: Insert

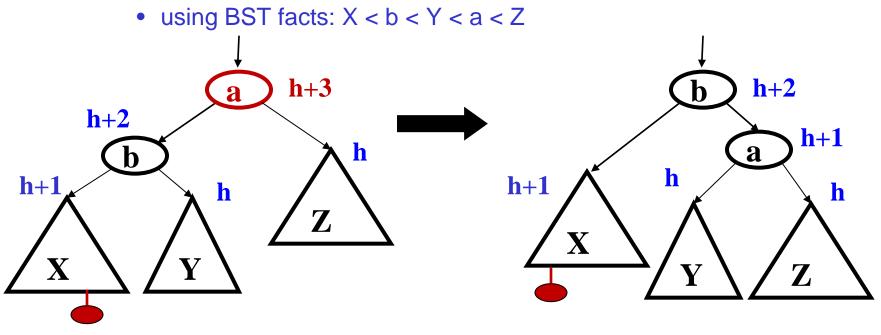
- Insert as in a BST (add a leaf in appropriate position)
- Check back up path for imbalance, which will be 1 of 4 cases:
 1. Unbalanced node's left-left grandchild is too tall
 2. Unbalanced node's left-right grandchild is too tall
 3. Unbalanced node's right-left grandchild is too tall
 4. Unbalanced node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced

AVL Trees: Single rotation

- Single rotation:
 - The basic operation we'll use to rebalance an AVL Tree
 - Move child of unbalanced node into parent position
 - Parent becomes the "other" child (always okay in a BST!)
 - Other sub-trees move in only way BST allows

The general left-left case

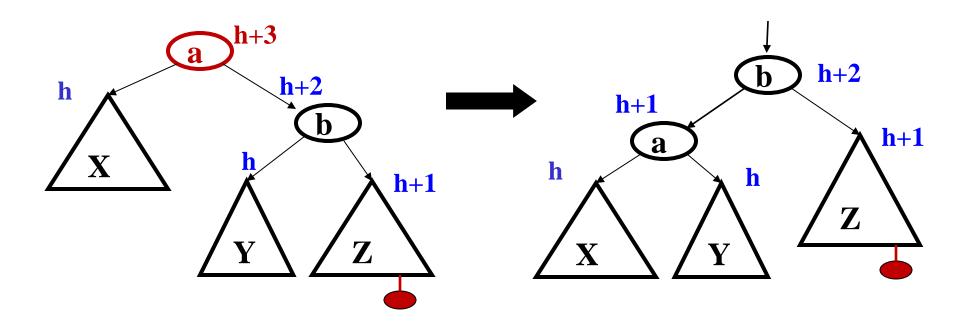
- Insertion into left-left grandchild causes an imbalance at node a
 - Move child of unbalanced node into parent position
 - Parent becomes the "other" child
 - Other sub-trees move in the only way BST allows:



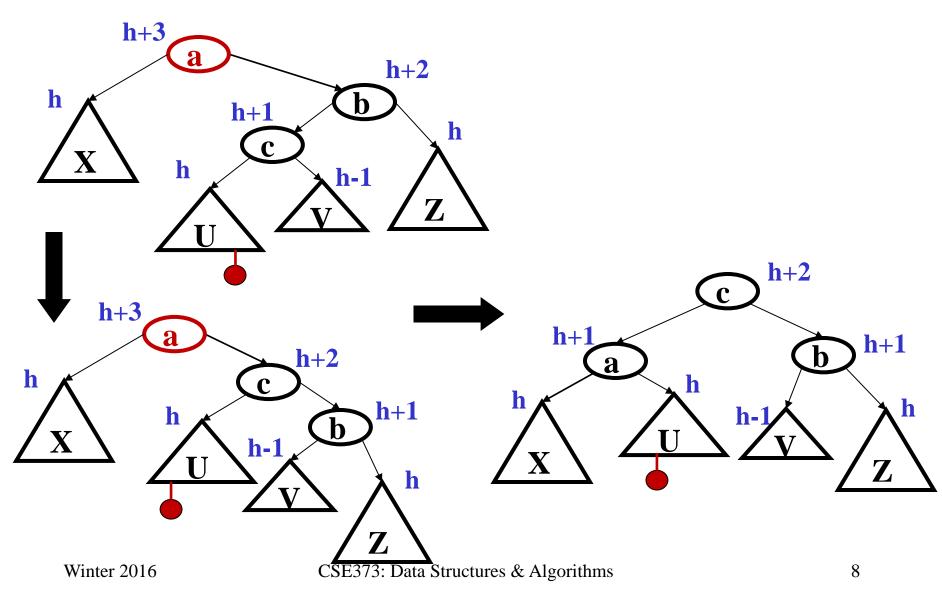
- A single rotation restores balance at the node
 - To same height as before insertion, so ancestors now balanced

The general right-right case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code

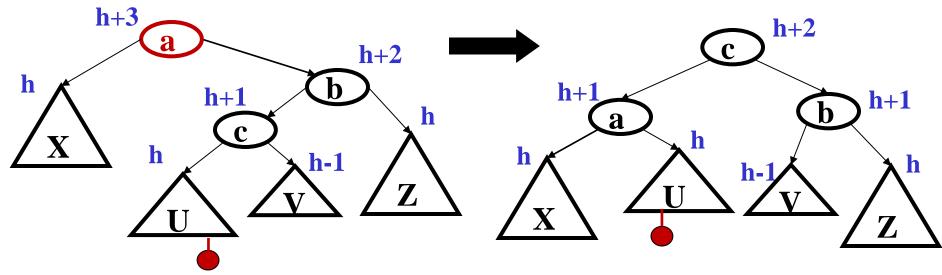


The general right-left case



Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:



• Easier to remember than you may think:

Move c to grandparent's position

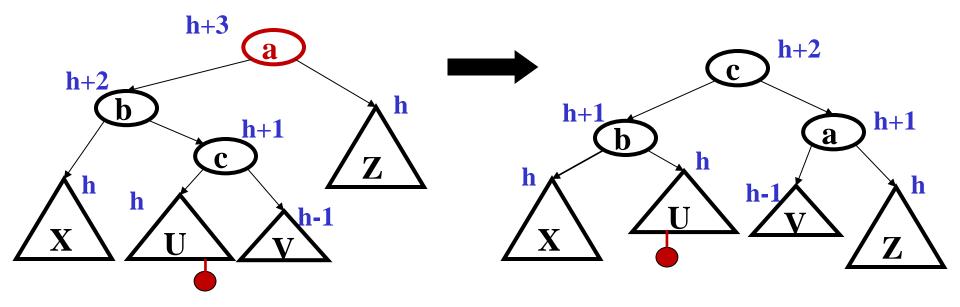
Put a, b, X, U, V, and Z in the only legal positions for a BST

Winter 2016

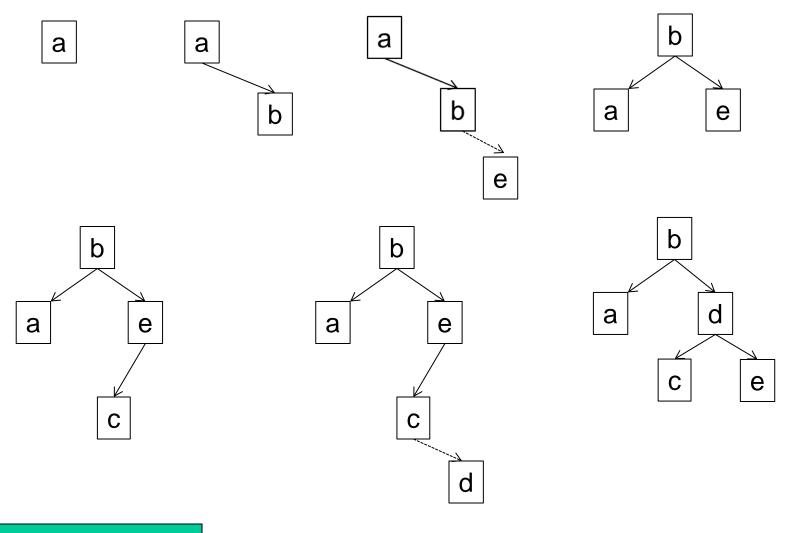
CSE373: Data Structures & Algorithms

The general left-right case

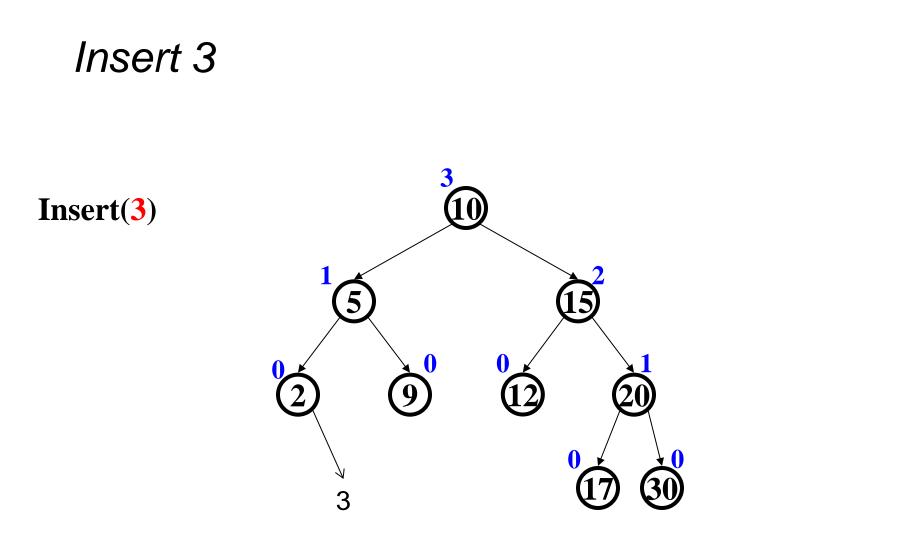
- Mirror image of right-left
 - Again, no new concepts, only new code to write



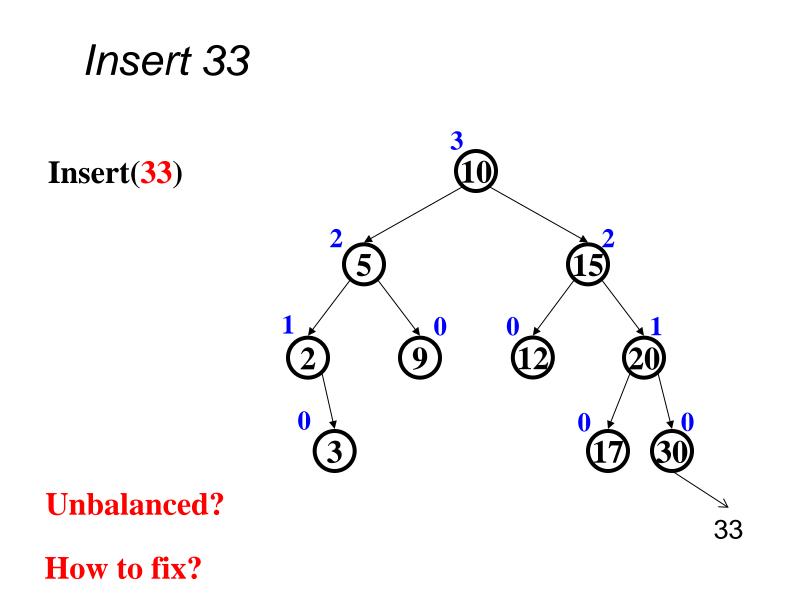
Insert into an AVL tree: a b e c d



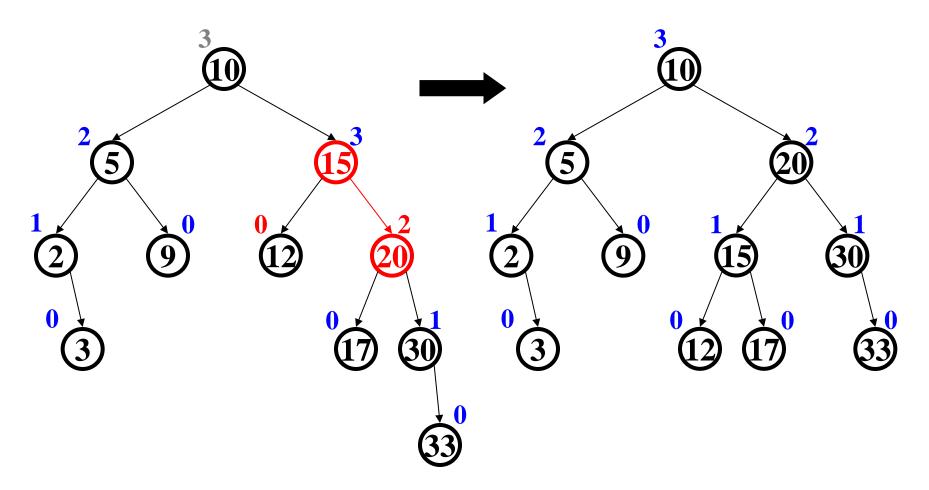
Student Activity



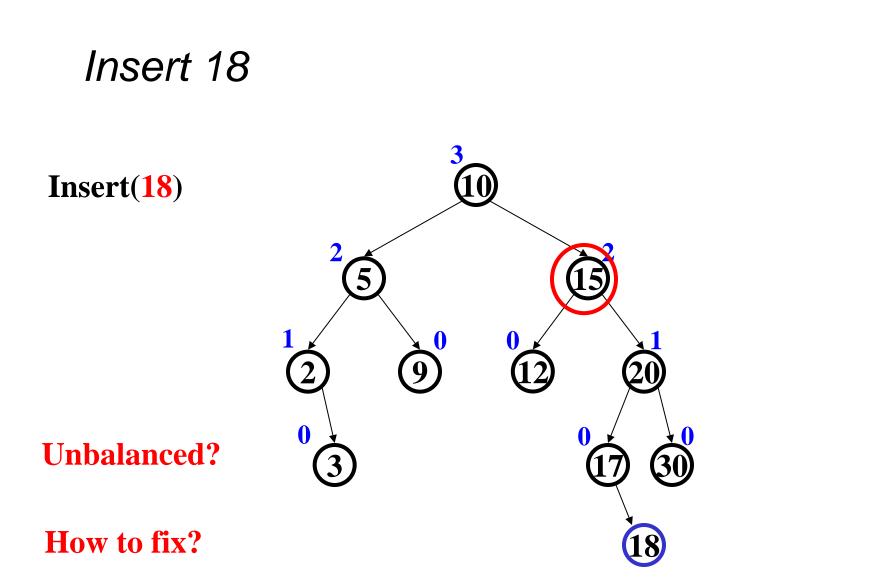
Unbalanced?



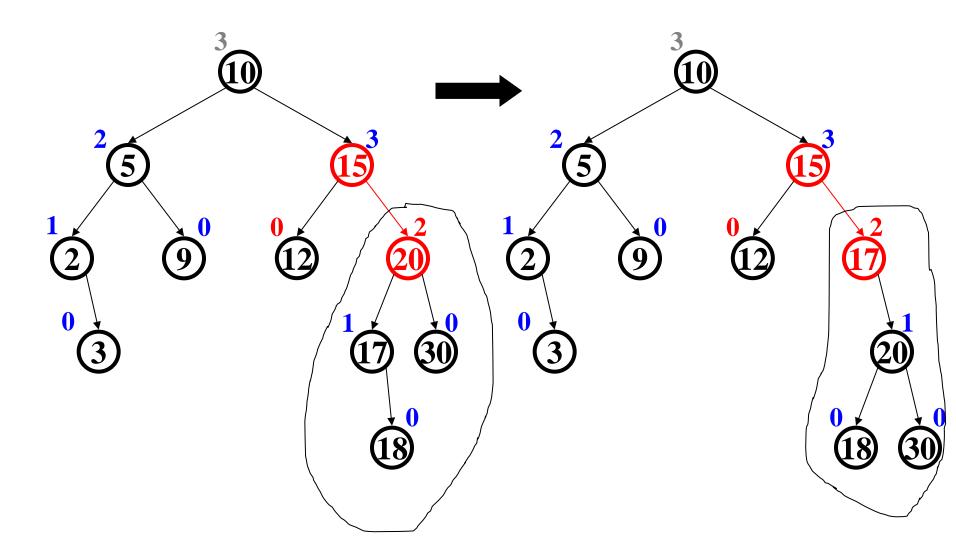
Insert 33: Single Rotation



CSE373: Data Structures &



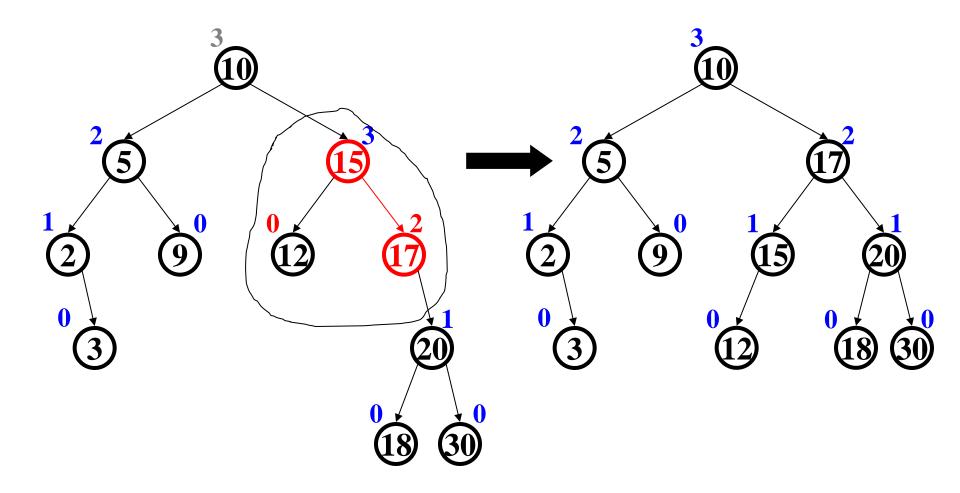
Insert 18: Double Rotation (Step #1)



Winter 2016

CSE373: Data Structures &

Insert 18: Double Rotation (Step #2)



Winter 2016

CSE373: Data Structures &

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. All operations logarithmic worst-case because trees are *always* balanced
- 2. Height balancing adds no more than a constant factor to the speed of **insert** and **delete**

Arguments against AVL trees:

- 1. More difficult to program & debug [but done once in a library!]
- 2. More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. If *amortized* (later) logarithmic time is enough, use splay trees (in the text)

Done with AVL Trees

next up...

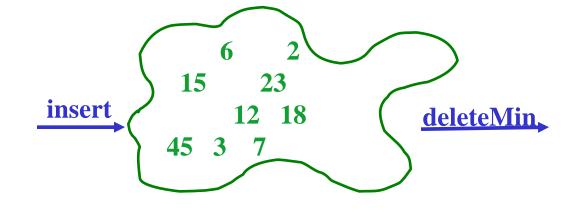
Priority Queues ADT

A new ADT: Priority Queue

- A priority queue holds compare-able data
 - Like dictionaries, we need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the *priority* and the *data*

Priorities

- Each item has a "priority"
 - In our examples, the *lesser* item is the one with the *greater* priority
 - So "priority 1" is more important than "priority 4"
 - (Just a convention, think "first is best")
- Operations:
 - insert
 - deleteMin
 - is_empty



- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

Example

insert x1 with priority 5
insert x2 with priority 3
insert x3 with priority 4
a = deleteMin // x2
b = deleteMin // x3
insert x4 with priority 2
insert x5 with priority 6
C = deleteMin // x4
d = deleteMin // x1

(x1,5) (x1,5) (x2,3) (x1,5) (x3,4) (x2,3) (x1,5) (x3,4) (x1,5)

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Winter 2016

Applications

Like all good ADTs, the priority queue arises often

- Sometimes blatant, sometimes less obvious
- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression
- Sort (first insert all, then repeatedly deleteMin)

Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for *n* data items
 - All times worst-case; assume arrays "have room"

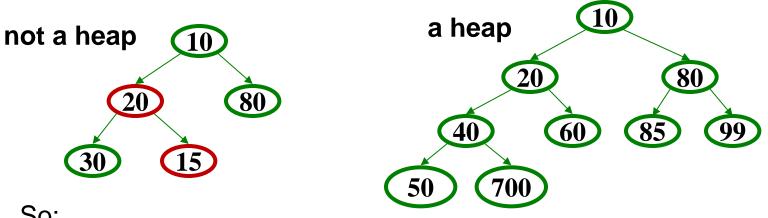
data	insert algorithm / time		deleteMin algorithm / time	
unsorted array	add at end	<i>O</i> (1)	search	<i>O</i> (<i>n</i>)
unsorted linked list	add at front	<i>O</i> (1)	search	<i>O</i> (<i>n</i>)
sorted circular array	/ search / shift	<i>O</i> (<i>n</i>)	move front	<i>O</i> (1)
sorted linked list	put in right place	<i>O</i> (<i>n</i>)	remove at fron	t O(1)
binary search tree	put in right place	<i>O</i> (<i>n</i>)	leftmost	<i>O</i> (<i>n</i>)
AVL tree	put in right place	O(log n) leftmost O	(log <i>n</i>)

CSE373: Data Structures & Algorithms

Our data structure: the Binary Heap

A binary min-heap (or just binary heap or just heap) has:

- Structure property: A *complete* binary tree
- Heap property: The priority of every (non-root) node is less than the priority of its parent
 - **Not** a binary search tree

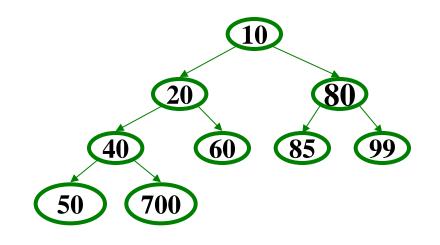


So:

- Where is the most important item?
- What is the height of a heap with *n* items?

Operations: basic idea

- findMin: return root.data
- deleteMin:
 - 1. answer = root.data
 - 2. Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap property
- insert:
 - Put new node in next position on bottom row to restore structure property
 - 2. "Percolate up" to restore heap property

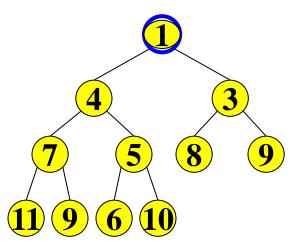


Overall strategy:

- Preserve structure property
- Break and restore heap property

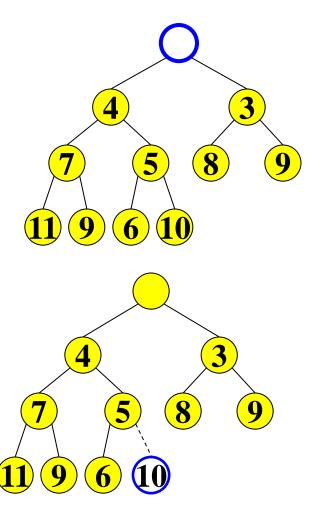
DeleteMin

Delete (and later return) value at root node



DeleteMin: Keep the Structure Property

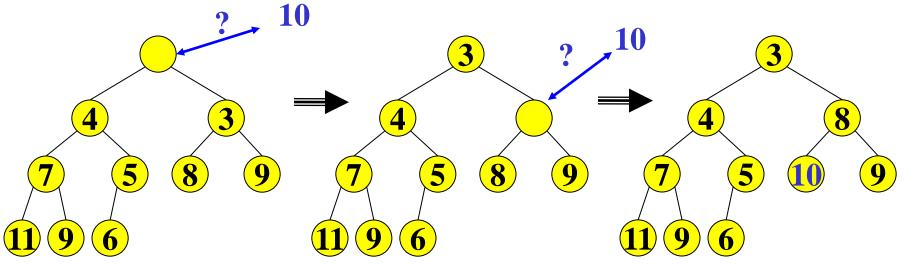
- We now have a "hole" at the root
 - Need to fill the hole with another value
- Keep structure property: When we are done, the tree will have one less node and must still be complete
- Pick the last node on the bottom row of the tree and move it to the "hole"



DeleteMin: Restore the Heap Property

Percolate down:

- Keep comparing priority of item with both children
- If priority is less important (>) than either, swap with the most important (smaller) child and go down one level
- Done if both children are less important (>) than the item or we've reached a leaf node



Why is this correct? What is the run time?

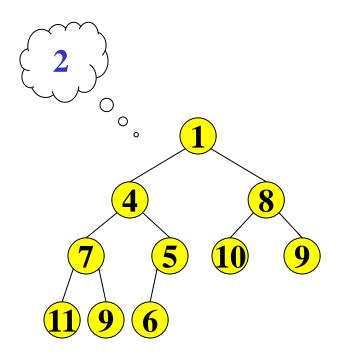
CSE373: Data Structures & Algorithms

DeleteMin: Run Time Analysis

- Run time is O(height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of *n* nodes?
 height = [log₂(n)]
- Run time of deleteMin is $O(\log n)$

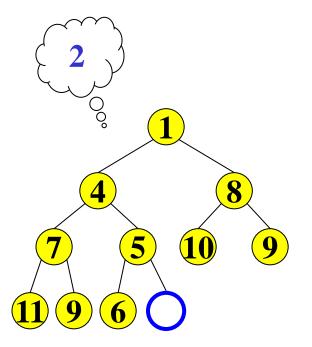
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct



Insert: Maintain the Structure Property

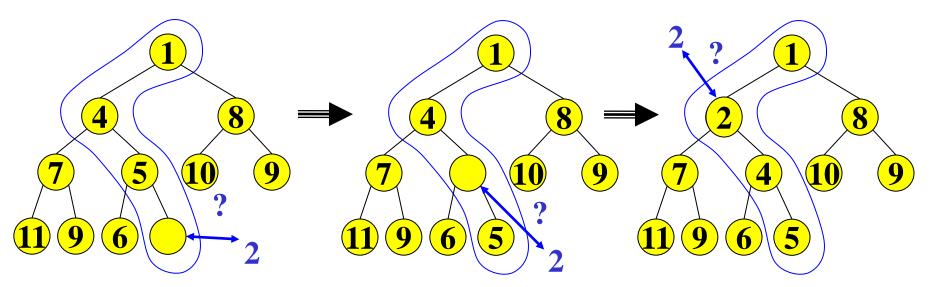
- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property



Insert: Restore the heap property

Percolate up:

- Put new data in new location
- If parent is less important (>), swap with parent, and continue
- Done if parent is more important (<) than item or reached root

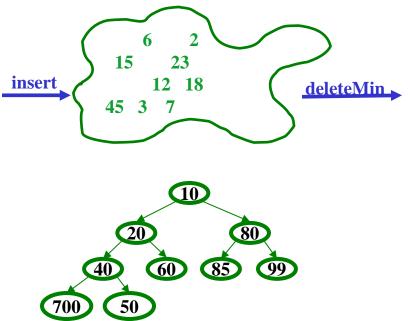


What is the running time? Like deleteMin, worst-case time proportional to tree height: O(log n)

CSE373: Data Structures & Algorithms

Summary

- Priority Queue ADT:
 - insert comparable object,
 - deleteMin
- Binary heap data structure:
 - Complete binary tree
 - Each node has less important priority value than its parent



- **insert** and **deleteMin** operations = O(height-of-tree)=O(log n)
 - **insert**: put at new last position in tree and percolate-up
 - deleteMin: remove root, put last element at root and percolate-down