
CSE373: Data Structures & Algorithms

Lecture 6: Binary Search Trees

Linda Shapiro
Spring 2016

Announcements

• HW2 due start of class Wednesday April 13 on
paper.

Spring 2016 CSE373: Data Structures & Algorithms 2

Previously

– Dictionary ADT
• stores (key, value) pairs
• find, insert, delete

– Trees
• Terminology
• Binary Trees

Spring 2016 CSE373: Data Structures & Algorithms 3

Reminder: Tree terminology

Spring 2016 CSE373: Data Structures & Algorithms 4

A

E

B

D F

C

G

I H

L J M K N

Node / Vertex

Edges

Root

Leaves

Left subtree
Right subtree

Example Tree Calculations

Spring 2016 CSE373: Data Structures & Algorithms 5

A

E

B

D F

C

G

I H

L J M K N

A

Recall: Height of a tree is the maximum
number of edges from the root to a leaf.

Height = 0

A

B Height = 1

What is the height of this tree?

What is the depth of node G?

What is the depth of node L?

Depth = 2

Depth = 4

Height = 4

Binary Trees

Spring 2016 CSE373: Data Structures & Algorithms 6

• Binary tree: Each node has at most 2 children (branching factor 2)

• Binary tree is
• A root (with data)
• A left subtree (may be empty)
• A right subtree (may be empty)

• Special Cases

What is full?
Every node has 0 or 2 children.

Tree Traversals
A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

Spring 2016 7 CSE373: Data Structures &
Algorithms

+ * 2 4 5

2 * 4 + 5

2 4 * 5 +

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 8 CSE373: Data Structures &
Algorithms

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 9 CSE373: Data Structures &
Algorithms

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 10 CSE373: Data Structures &
Algorithms

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 11 CSE373: Data Structures &
Algorithms

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

D

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 12 CSE373: Data Structures &
Algorithms

✓

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

D B

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 13 CSE373: Data Structures &
Algorithms

✓

✓ ✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

D B E

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 14 CSE373: Data Structures &
Algorithms

✓

✓ ✓

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

D B E A

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 15 CSE373: Data Structures &
Algorithms

✓

✓ ✓

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

D B E A

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 16 CSE373: Data Structures &
Algorithms

✓

✓ ✓

✓

✓

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

D B E A F C

More on traversals
void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 17 CSE373: Data Structures &
Algorithms

✓

✓ ✓

✓

✓

✓ ✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

D B E A F C G

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

Sometimes order doesn’t matter
• Example: sum all elements

Sometimes order matters
• Example: evaluate an expression tree

A

B

D E

C

F G

Spring 2016 18 CSE373: Data Structures & Algorithms

A

B

D E

C

F G

✓

✓ ✓

✓

✓

✓ ✓

Binary Search Tree (BST) Data Structure

4

12 10 6 2

11 5

8

14

13

7 9

• Structure property (binary tree)
– Each node has ≤ 2 children
– Result: keeps operations simple

• Order property
– All keys in left subtree smaller

than node’s key
– All keys in right subtree larger

than node’s key
– Result: easy to find any given key

Spring 2016 19 CSE373: Data Structures & Algorithms

A binary search tree is a type of binary tree
(but not all binary trees are binary search
trees!)

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

Spring 2016 20 CSE373: Data Structures & Algorithms

Activity! What
nodes violate the
BST properties?

Find in BST, Recursive

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){
 if(root == null)
 return null;
 if(key < root.key)
 return find(key,root.left);
 if(key > root.key)
 return find(key,root.right);
 return root.data;
}

Spring 2016 21 CSE373: Data Structures & Algorithms

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)

3 2 1 4

What is the time complexity? Worst case.

Find in BST, Iterative

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){
 while(root != null
 && root.key != key) {
 if(key < root.key)
 root = root.left;
 else(key > root.key)
 root = root.right;
 }
 if(root == null)
 return null;
 return root.data;
}

Spring 2016 22 CSE373: Data Structures & Algorithms

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)

Let’s look for 16.

Bonus: Other BST “Finding” Operations

• FindMin: Find minimum node

– Left-most node

• FindMax: Find maximum node

– Right-most node

20 9 2

15 5

12

30 7 17 10

Spring 2016 23 CSE373: Data Structures & Algorithms

How would we implement?

Bonus: Other BST “Finding” Operations

• FindMin: Find minimum node

– Left-most node

20 9 2

15 5

12

30 7 17 10

Spring 2016 24 CSE373: Data Structures & Algorithms

Node FindMin(Node root){
 if(root == null)
 return null;
 if(root.left==null)
 return root;
 return FindMin(root.left);
}

Insert in BST

20 9 2

15 5

12

30 7 17

insert(13)
insert(8)
insert(31)

(New) insertions happen
only at leaves – easy! 10

8 31

13

Spring 2016 25 CSE373: Data Structures & Algorithms

Again… worst case running time is O(n), which
may happen if the tree is not balanced.

Find the right spot and hook on a new node.

Deletion in BST

20 9 2

15 5

12

30 7 17

Why might deletion be harder than insertion?

10

Spring 2016 26 CSE373: Data Structures & Algorithms

Removing an item may disrupt the tree structure!

Deletion in BST
• Basic idea: find the node to be removed, then

“fix” the tree so that it is still a binary search tree

• Three potential cases to fix:
– Node has no children (leaf)
– Node has one child
– Node has two children

Spring 2016 27 CSE373: Data Structures & Algorithms

Deletion – The Leaf Case

20 9 2

15 5

12

30 7 17

delete(17)

10

Spring 2016 28 CSE373: Data Structures & Algorithms

Deletion – The One Child Case

20 9 2

15 5

12

30 7 10

Spring 2016 29 CSE373: Data Structures & Algorithms

delete(15)

Deletion – The One Child Case

20 9 2

5

12

30 7 10

Spring 2016 30 CSE373: Data Structures & Algorithms

delete(15)

Deletion – The Two Child Case

30 9 2

20 5

12

7

What can we replace 5 with?

10

Spring 2016 31 CSE373: Data Structures & Algorithms

delete(5)

4
largest value
on its left

smallest value
on its right

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
• successor minimum node from right subtree

 findMin(node.right)* the text does this

• predecessor maximum node from left subtree
 findMax(node.left)

Now delete the original node containing successor or predecessor

Spring 2016 32 CSE373: Data Structures & Algorithms

Deletion: The Two Child Case (example)

Spring 2016 33 CSE373: Data Structures & Algorithms

30 9 2

23 5

12

7 10

18

19 15 32 25

delete(23)

Deletion: The Two Child Case (example)

Spring 2016 34 CSE373: Data Structures & Algorithms

30 9 2

23 5

12

7 10

18

19 15 32 25

delete(23)

Deletion: The Two Child Case (example)

Spring 2016 35 CSE373: Data Structures & Algorithms

30 9 2

25 5

12

7 10

18

19 15 32 25

delete(23)

Deletion: The Two Child Case (example)

Spring 2016 36 CSE373: Data Structures & Algorithms

30 9 2

25 5

12

7 10

18

15 32 19

Success!

delete(23)

Deletion: The Two Child Case (exercise)

Spring 2016 37 CSE373: Data Structures & Algorithms

30 9 2

25 5

12

7 10

18

15 32 19

delete(12)

Lazy Deletion

• Lazy deletion can work well for a BST
– Simpler
– Can do “real deletions” later as a batch
– Some inserts can just “undelete” a tree node

• But

– Can waste space and slow down find operations
– Make some operations more complicated:

• e.g., findMin and findMax?

Spring 2016 38 CSE373: Data Structures & Algorithms

BuildTree for BST
• Let’s consider buildTree

– Insert all, starting from an empty tree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

– If inserted in given order,

what is the tree?

– What big-O runtime for this kind of sorted input?
 1 + 2 + 3 + . . . + n = n(n+1)/2

– Is inserting in the reverse order
 any better?

1

2

3 O(n2)
Not a happy place

Spring 2016 39 CSE373: Data Structures & Algorithms

BuildTree for BST
• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

• What if we could somehow re-arrange them
– median first, then left median, right median, etc.
– 5, 3, 7, 2, 1, 4, 8, 6, 9

– What tree does that give us?

– What big-O runtime?

– So the order the values
 come in is important!

8 4 2

7 3

5

9

6

1

O(n log n), definitely better

Spring 2016 40 CSE373: Data Structures & Algorithms

Exercise

Spring 2016 CSE373: Data Structures & Algorithms 41

Build a binary search tree from the following ordered input.
If you get a duplicate, just ignore it as already there.
1. The month of your birthday.
2. The day of your birthday.
3. The number of siblings you have.
4. The number of courses you are taking.
5. Your age.
6. Your weight divided by 10 rounded down.
7. The rightmost digit of your social security number or
 student number.
8. The hour that your last class on Mondays ends.

What is the height of your tree?

Complexity of Building a Binary Search
Tree
• Worst case: O(n2)

• Best case: O(n log n)

• We do better by keeping the tree balanced.

• How are we going to do that?

Spring 2016 42 CSE373: Data Structures & Algorithms

	CSE373: Data Structures & Algorithms��Lecture 6: Binary Search Trees
	Announcements
	Previously
	Reminder: Tree terminology
	Example Tree Calculations
	Binary Trees
	Tree Traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	Binary Search Tree (BST) Data Structure
	Are these BSTs?
	Find in BST, Recursive
	Find in BST, Iterative
	Bonus: Other BST “Finding” Operations
	Bonus: Other BST “Finding” Operations
	Insert in BST
	Deletion in BST
	Deletion in BST
	Deletion – The Leaf Case
	Deletion – The One Child Case
	Deletion – The One Child Case
	Deletion – The Two Child Case
	Deletion – The Two Child Case
	Deletion: The Two Child Case (example)
	Deletion: The Two Child Case (example)
	Deletion: The Two Child Case (example)
	Deletion: The Two Child Case (example)
	Deletion: The Two Child Case (exercise)
	Lazy Deletion
	BuildTree for BST
	BuildTree for BST
	Exercise
	Complexity of Building a Binary Search Tree

