

CSE373: Data Structures & Algorithms Lecture 6: Binary Search Trees

Linda Shapiro Spring 2016

Announcements

• HW2 due start of class Wednesday April 13 on paper.

Previously

- Dictionary ADT
 - stores (key, value) pairs
 - find, insert, delete
- Trees
 - Terminology
 - Binary Trees

Reminder: Tree terminology

Example Tree Calculations

Recall: Height of a tree is the maximum number of edges from the root to a leaf.

What is the height of this tree?

What is the depth of node G? Depth = 2

What is the depth of node L? Depth = 4

Height = 4

Binary Trees

- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
 - A root (with data)
 - A left subtree (may be empty)
 - A right subtree (may be empty)

What is full?

Every node has 0 or 2 children.

6

Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

- *Pre-order*: root, left subtree, right subtree
 + * 2 4 5
- In-order: left subtree, root, right subtree
 2 * 4 + 5

(an expression tree)

• *Post-order*: left subtree, right subtree, root

2 4 * 5 +

= current node

= processing (on the call stack)

= current node

= processing (on the call stack)

= current node

= processing (on the call stack)

D

= current node

= processing (on the call stack)

= completed node
Image: Image
Image: Imag

DB

= current node

= processing (on the call stack)

= completed node
Image: Image
Image: Imag

DBE

A = current node

= processing (on the call stack)

= completed node \checkmark = element has been processed

DBEA

= completed node
Image: Image
Image: Imag

DBEA

= current node

= completed node
Image: Image
Image: Imag

DBEAFC

= current node

= processing (on the call stack)

= completed node
Image: Image
Image: Imag

DBEAFCG

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```


Sometimes order doesn't matter

• Example: sum all elements

Sometimes order matters

• Example: evaluate an expression tree

Binary Search Tree (BST) Data Structure

• Structure property (binary tree) - Each node has ≤ 2 children 8 Result: keeps operations simple • Order property 5 - All keys in left subtree smaller than node's key 6 10 All keys in right subtree larger than node's key Result: easy to find any given key 4 A binary search tree is a type of binary tree (but not all binary trees are binary search trees!)

Spring 2016

Find in BST, Recursive


```
Data find(Key key, Node root){
  if(root == null)
    return null;
  if(key < root.key)
    return find(key,root.left);
  if(key > root.key)
    return find(key,root.right);
  return root.data;
}
```

What is the time complexity? Worst case.

Worst case running time is O(n).

- Happens if the tree is very lopsided (e.g. list)

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4$$

Find in BST, Iterative

Let's look for 16.

```
Data find(Key key, Node root){
  while(root != null
        && root.key != key) {
    if(key < root.key)
    root = root.left;
  else(key > root.key)
    root = root.right;
  }
  if(root == null)
    return null;
  return root.data;
}
```

Worst case running time is O(n).

- Happens if the tree is very lopsided (e.g. list)

CSE373: Data Structures & Algorithms

Bonus: Other BST "Finding" Operations

- FindMin: Find *minimum* node
 - Left-most node

- FindMax: Find maximum node
 - Right-most node

How would we implement?

Bonus: Other BST "Finding" Operations

Insert in BST Find the right spot and hook on a new node.

insert(13)
insert(8)
insert(31)

(New) insertions happen only at leaves – easy!

Again... worst case running time is O(n), which may happen if the tree is not balanced.

CSE373: Data Structures & Algorithms

Deletion in BST

Why might deletion be harder than insertion? Removing an item may disrupt the tree structure!

Spring 2016

CSE373: Data Structures & Algorithms

Deletion in BST

- Basic idea: **find** the node to be removed, then "fix" the tree so that it is still a binary search tree
- Three potential cases to fix:
 - Node has no children (leaf)
 - Node has one child
 - Node has two children

Deletion – The Leaf Case

Deletion – The One Child Case

Deletion – The One Child Case

Deletion – The Two Child Case

What can we replace 5 with?

Spring 2016

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- successor minimum node from right subtree findMin(node.right)* the text does this
- predecessor maximum node from left subtree findMax(node.left)

Now delete the original node containing *successor* or *predecessor*

Success! ©

Deletion: The Two Child Case (exercise)

Lazy Deletion

- Lazy deletion can work well for a BST
 - Simpler
 - Can do "real deletions" later as a batch
 - Some inserts can just "undelete" a tree node
- But
 - Can waste space and slow down find operations
 - Make some operations more complicated:
 - e.g., findMin and findMax?

BuildTree for BST

- Let's consider buildTree
 - Insert all, starting from an empty tree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for this kind of sorted input? 1 + 2 + 3 + ... + n = n(n+1)/2Not a happy place
 - Is inserting in the reverse order any better?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What if we could somehow re-arrange them
 median first, then left median, right median, etc.
 - 5, 3, 7, 2, 1, 4, 8, 6, 9
 - What tree does that give us?
 - What big-O runtime?
 - O(n log n), definitely better
 - So the order the values come in is important!

Exercise

Build a binary search tree from the following ordered input. If you get a duplicate, just ignore it as already there.

- 1. The month of your birthday.
- 2. The day of your birthday.
- 3. The number of siblings you have.
- 4. The number of courses you are taking.
- 5. Your age.
- 6. Your weight divided by 10 rounded down.
- 7. The rightmost digit of your social security number or student number.
- 8. The hour that your last class on Mondays ends.

What is the height of your tree?

Complexity of Building a Binary Search Tree

- Worst case: O(n²)
- Best case: O(n log n)
- We do better by keeping the tree balanced.
- How are we going to do that?