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Announcements 

• HW2 due start of class Wednesday April 13 on 
paper. 
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Previously 

– Dictionary ADT 
• stores (key, value) pairs 
• find, insert, delete 

– Trees 
• Terminology 
• Binary Trees 
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Reminder: Tree terminology 
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A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

Node / Vertex 

Edges 

Root 

Leaves 

Left subtree 
Right subtree 



Example Tree Calculations 
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A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

A 

Recall: Height of a tree is the maximum 
number of edges from the root to a leaf. 

Height = 0  

A 

B Height = 1  

What is the height of this tree? 

What is the depth of node G? 

What is the depth of node L? 

Depth = 2  

Depth = 4  

Height = 4  



Binary Trees 
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• Binary tree:  Each node has at most 2 children (branching factor 2) 
 

• Binary tree is 
• A root (with data) 
• A left subtree (may be empty)  
• A right subtree (may be empty)  

 
• Special Cases 

What is full? 
Every node has 0 or 2 children. 



Tree Traversals 
A traversal is an order for visiting all the nodes of a tree 
 
• Pre-order: root, left subtree, right subtree 
      
 
• In-order: left subtree, root, right subtree 

 
 

• Post-order: left subtree, right subtree, root 

+ 

* 

2 4 

5 

(an expression tree) 
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+ * 2 4 5 

2 * 4 + 5 

2 4 * 5 + 



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
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A 

B 

D E 

C 

F G 
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    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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✓ 

    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 

D 



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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✓ 

✓ 

    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 

D B  



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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✓ 

✓ ✓ 

    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 

D B E   



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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✓ 

✓ ✓ 

✓ 

    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 

D B E A    



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 

Spring 2016 15 CSE373: Data Structures & 
Algorithms 

✓ 

✓ ✓ 

✓ 

    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 

D B E A    



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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✓ 

✓ ✓ 

✓ 

✓ 

✓ 

    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 

D B E A F C    



More on  traversals 
void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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✓ 

✓ ✓ 

✓ 

✓ 

✓ ✓ 

    = current node   = processing (on the call stack) 
     
    = completed node  = element has been processed 

A A 

A ✓ 

D B E A F C G    



More on  traversals 

void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

Sometimes order doesn’t matter 
• Example: sum all elements 

Sometimes order matters 
• Example: evaluate an expression tree 

A 

B 

D E 

C 

F G 
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A 

B 

D E 

C 

F G 

✓ 

✓ ✓ 

✓ 

✓ 

✓ ✓ 



Binary Search Tree (BST) Data Structure 

4 

12 10 6 2 

11 5 

8 

14 

13 

7 9 

• Structure property (binary tree) 
– Each node has ≤ 2 children 
– Result: keeps operations simple 

 

• Order property 
– All keys in left subtree smaller 

than node’s key 
– All keys in right subtree larger 

than node’s key 
– Result: easy to find any given key 
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A binary search tree is a type of binary tree  
(but not all binary trees are binary search 
trees!) 



Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 

15 
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Activity! What 
nodes violate the 
BST properties? 



Find in BST, Recursive 

20 9 2 

15 5 

12 

30 7 17 10 

Data find(Key key, Node root){ 
 if(root == null) 
   return null; 
 if(key < root.key) 
   return find(key,root.left); 
 if(key > root.key) 
   return find(key,root.right); 
 return root.data; 
} 
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Worst case running time is O(n). 
- Happens if the tree is very lopsided (e.g. list) 

3 2 1 4 

What is the time complexity? Worst case. 



Find in BST, Iterative 

20 9 2 

15 5 

12 

30 7 17 10 

Data find(Key key, Node root){ 
 while(root != null  
       && root.key != key) { 
  if(key < root.key) 
    root = root.left; 
  else(key > root.key) 
    root = root.right; 
 } 
 if(root == null) 
    return null; 
 return root.data; 
} 
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Worst case running time is O(n). 
- Happens if the tree is very lopsided (e.g. list) 

Let’s look for 16. 



Bonus: Other BST “Finding” Operations 

 
• FindMin: Find minimum node 

– Left-most node 
 
 
• FindMax: Find maximum node 

– Right-most node 
 

 

20 9 2 

15 5 

12 

30 7 17 10 
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How would we implement? 



Bonus: Other BST “Finding” Operations 

 
• FindMin: Find minimum node 

– Left-most node 
 
 

20 9 2 

15 5 

12 

30 7 17 10 
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Node FindMin(Node root){ 
 if(root == null) 
   return null; 
 if(root.left==null) 
  return root; 
 return FindMin(root.left); 
} 



Insert in BST 

20 9 2 

15 5 

12 

30 7 17 

insert(13) 
insert(8) 
insert(31) 

(New) insertions happen 
only at leaves – easy! 10 

8 31 

13 
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Again… worst case running time is O(n), which 
may happen if the tree is not balanced. 

Find the right spot and hook on a new node. 



Deletion in BST 

20 9 2 

15 5 

12 

30 7 17 

Why might deletion be harder than insertion? 

10 
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Removing an item may disrupt the tree structure! 



Deletion in BST 
• Basic idea: find the node to be removed, then  

“fix” the tree so that it is still a binary search tree 
 

• Three potential cases to fix: 
– Node has no children (leaf) 
– Node has one child 
– Node has two children 
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Deletion – The Leaf Case 

20 9 2 

15 5 

12 

30 7 17 

delete(17) 

10 
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Deletion – The One Child Case 

20 9 2 

15 5 

12 

30 7 10 

Spring 2016 29 CSE373: Data Structures & Algorithms 

delete(15) 



Deletion – The One Child Case 

20 9 2 

5 

12 

30 7 10 
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delete(15) 



Deletion – The Two Child Case 

30 9 2 

20 5 

12 

7 

What can we replace 5 with? 
 
 

10 
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delete(5) 

4 
largest value 
on its left 

smallest value 
on its right 



Deletion – The Two Child Case 

Idea: Replace the deleted node with a value guaranteed to be 
between the two child subtrees 

 
Options: 
• successor   minimum node from right subtree  

  findMin(node.right)* the text does this 
 

• predecessor   maximum node from left subtree     
  findMax(node.left) 

 
Now delete the original node containing successor or predecessor 
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Deletion: The Two Child Case (example) 
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30 9 2 

23 5 

12 

7 10 

18 

19 15 32 25 

delete(23) 



Deletion: The Two Child Case (example) 
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30 9 2 

23 5 

12 

7 10 

18 

19 15 32 25 

delete(23) 



Deletion: The Two Child Case (example) 
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30 9 2 

25 5 

12 

7 10 

18 

19 15 32 25 

delete(23) 



Deletion: The Two Child Case (example) 
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30 9 2 

25 5 

12 

7 10 

18 

15 32 19 

Success!  

delete(23) 



Deletion: The Two Child Case (exercise) 
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30 9 2 

25 5 

12 

7 10 

18 

15 32 19 

delete(12) 



Lazy Deletion 

• Lazy deletion can work well for a BST 
– Simpler 
– Can do “real deletions” later as a batch 
– Some inserts can just “undelete” a tree node 

 
• But 

– Can waste space and slow down find operations 
– Make some operations more complicated: 

• e.g., findMin and findMax? 
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BuildTree for BST 
• Let’s consider buildTree 

– Insert all, starting from an empty tree 
 

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 
 
– If inserted in given order,  

what is the tree?   
 

– What big-O runtime for this kind of sorted input? 
     1 + 2 + 3 + . . . + n = n(n+1)/2 
 
– Is inserting in the reverse order  
 any better? 
 

 

1 

2 

3 O(n2) 
Not a happy place 
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BuildTree for BST 
• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

 

• What if we could somehow re-arrange them 
– median first, then left median, right median, etc. 
– 5, 3, 7, 2, 1, 4, 8, 6, 9  

 
– What tree does that give us?  

 
– What big-O runtime? 

 
 

– So the order the values 
    come in is important! 

8 4 2 

7 3 

5 

9 

6 

1 

O(n log n), definitely better 
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Exercise 
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Build a binary search tree from the following ordered input. 
If you get a duplicate, just ignore it as already there. 
1. The month of your birthday. 
2. The day of your birthday. 
3. The number of siblings you have. 
4. The number of courses you are taking. 
5. Your age. 
6. Your weight divided by 10 rounded down. 
7. The rightmost digit of your social security number or 
      student number. 
8.   The hour that your last class on Mondays ends. 

What is the height of your tree? 



Complexity of Building a Binary Search 
Tree 
• Worst case: O(n2) 
 
• Best case: O(n log n) 

 
• We do better by keeping the tree balanced. 

 
• How are we going to do that? 
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