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Today’s Outline 

Announcements 
- Homework 1 due TODAY at 11:59 pm  
- Homework 2 out (paper and pencil assignment) 

- Due in class Wednesday April 13 at the START of class 
 

Today’s Topics 
• Finish Asymptotic Analysis 
• Dictionary ADT (a.k.a. Map): associate keys with values 

– Extremely common 
• Binary Trees 
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Summary of Asymptotic Analysis 

Analysis can be about: 

• The problem or the algorithm (usually algorithm) 

• Time or space (usually time) 

– Or power or dollars or … 

• Best-, worst-, or average-case (usually worst)  

• Upper-, lower-, or tight-bound  (usually upper) 

 
• The most common thing we will do is give an O upper bound to 

the worst-case running time of an algorithm. 
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g(n) ≤ f(n) O 

g(n) ≥ f(n) Ω 

both    θ 



How to apply the definition easily 

• Theory (mine) 
• Let g(n) = c1*g1(n) + c2*g2(n) + ... + ck*gk(n) + c0 
• Suppose the functions g1, g2, ... gk are already arranged in 

order with highest complexity at the far left. 
• Select the LARGEST of the constants C = max(c1, c2, ..ck, c0) 
• Then g(n) ≤ C*g1(n) + C*g2(n) + ... + C*gk(n) + C 
• Or g(n) ≤ C(g1(n) + g2(n) + ... + gk(n) + 1) 
• But g1(n) is bigger than g2(n) and all the others beyond some 

known n0. 
• So g(n) ≤ C(g1(n) + g1(n) + ... +g1(n) + g1(n)) 
• Or g(n) ≤ C(k+1)*g1(n) = C’*g1(n) for all n greater than n0. 
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Example 
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g(n) = 25 n4 + 30 n2  + 100 nlogn  + 54 
 
g(n) ≤  100 n4 + 100n2  + 100 nlogn + 100 
 
g(n) ≤   100(n4 + n2 + nlogn + 1) 
 
g(n) ≤    100(n4 + n4 + n4 + n4) 
 
g(n) ≤    100*4*n4 
 
g(n) ≤    400*n4 for all n ≥ 1 
 



Big-Oh Caveats 

• Asymptotic complexity focuses on behavior for large n and is 
independent of any computer / coding trick 
 

• But you can “abuse” it to be misled about trade-offs 
 

• Example: n1/10 vs. log n 
– Asymptotically n1/10 grows more quickly 
– But the “cross-over” point is around 5 * 1017 

– So if you have input size less than 258, prefer n1/10 
 

• For small n, an algorithm with worse asymptotic complexity 
might be faster 
– If you care about performance for small n then the constant 

factors can matter 
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Addendum: Timing vs. Big-Oh Summary 

• Big-oh is an essential part of computer science’s mathematical 
foundation 
– Examine the algorithm itself, not the implementation 
– Reason about (even prove) performance as a function of n 

 
• Timing also has its place 

– Compare implementations 
– Focus on data sets you care about (versus worst case) 
– Determine what the constant factors “really are” 
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Let’s take a breath 

• So far we’ve covered 
– Some simple ADTs: stacks, queues, lists 
– Some math (proof by induction) 
– How to analyze algorithms  
– Asymptotic notation (Big-Oh) 
 

• Coming up…. 
– Many more ADTs 

• Starting with dictionaries 
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The Dictionary (a.k.a. Map) ADT 

• Data: 
– set of (key, value) pairs 
– keys must be comparable 

 
• Operations: 

– insert(key,value) 
– find(key) 
– delete(key) 
– … 

• ezgi 
Ezgi Mercan 

      OH: Thurs 10.30-11.30 
 … 

 
• mert 

Mert Sagalm 
      OH: TTH 3.30-4.30 
 … 

 
• bran 

Bran Hagger 
      OH: Mon 10.00-11.00 
       … 
 

insert(ezgi, ….) 

find(bran) 
Bran Hagger, … 

Will tend to emphasize the keys; 
don’t forget about the stored values 
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A Modest Few Uses 

Any time you want to store information according to some key and 
be able to retrieve it efficiently 
– Lots of programs do that! 

 
• Search:  inverted indexes, phone directories, … 
• Networks:   router tables 
• Operating systems:  page tables 
• Compilers:   symbol tables 
• Databases:   dictionaries with other nice properties 
• Biology:  genome maps 
• … 
  Possibly the most widely used ADT 
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key | attr1 | attr2 | attr3 
 k1  |  v11  |  v12 |  v13 
 k2  |  v21  |  v22 |  v23 



Simple implementations 
For dictionary with n key/value pairs 
 

      insert   find    delete 
• Unsorted linked-list     

 
• Unsorted array 

 
• Sorted linked list                 

 
• Sorted array                                       
 

* Unless we need to check for duplicates 
 

We’ll see a Binary Search Tree (BST) probably does better  
 but not in the worst case (unless we keep it balanced) 
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O(1)*  O(n)  O(n)  

O(n)  O(n)  

O(n)  O(n)  O(n)  

O(1)*  

O(n)  O(n)  O(log n)  



Lazy Deletion 

A general technique for making delete as fast as find: 
– Instead of actually removing the item just mark it deleted 

 

Plusses: 
– Simpler 
– Can do removals later in batches 
– If re-added soon thereafter, just unmark the deletion 

 

Minuses: 
– Extra space for the “is-it-deleted” flag 
– Data structure full of deleted nodes wastes space 
– May complicate other operations 
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10 12 24 30 41 42 44 45 50 
         



Better dictionary data structures 

There are many good data structures for (large) dictionaries 
 

1. Binary trees 
2. AVL trees 

– Binary search trees with guaranteed balancing 
 

3. B-Trees 
– Also always balanced, but different and shallower 
– B-Trees are not the same as Binary Trees  

• B-Trees generally have large branching factor 
 

4. Hash Tables 
– Not tree-like at all 

 

Skipping: Other balanced trees (e.g., red-black, splay) 
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Tree terms (review?) 
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A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

Tree T 

Root (tree) 
Leaves (tree) 
Children (node) 
Parent (node) 
Siblings (node) 
Ancestors (node) 
Descendents (node) 
Subtree (node) 

Depth (node) 
Height (tree) 
Degree (node) 
Branching factor (tree) 

Depth 0 

Depth 1 

Depth 2 

Depth 3 

Depth 4 

4 



More tree terms 

• There are many kinds of trees 
– Every binary tree is a tree 
– Every list is kind of a tree (think of “next” as the one child) 

 
• There are many kinds of binary trees 

– Every binary search tree is a binary tree 
– Later: A binary heap is a different kind of binary tree 

 
• A tree can be balanced or not 

– A balanced tree with n nodes has a height of O(log n)  
– Different tree data structures have different “balance 

conditions” to achieve this 
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Kinds of trees 

Certain terms define trees with specific structure 
 

• Binary tree:  Each node has at most 2 children (branching factor 2) 
• n-ary tree:    Each node has at most n children (branching factor n) 
• Perfect tree: Each row completely full 
• Complete tree:  Each row completely full except maybe the bottom 

row, which is filled from left to right 
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What is the height of a perfect binary tree with n nodes?   
A complete binary tree? 

log2n 



Binary Trees 

• Binary tree:  Each node has at most 2 children (branching factor 2) 
 

• Binary tree is 
– A root (with data) 
– A left subtree that’s a binary tree  
– A right subtree that’s a binary tree 

• These subtrees may be empty.  
• Representation: 

A 

B 

D E 

C 

F 

H G 

J I 

Data 
right  

pointer 
left 

pointer 

• For a dictionary, data will include a 
key and a value 
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Binary Tree Representation 
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Binary Trees: Some Numbers 
 
Recall: height of a tree = longest path from root to leaf (count edges) 
 
For binary tree of height h: 

– max # of leaves:  
 

– max # of nodes: 
 

– min # of leaves: 
 

– min # of nodes: 
 

2h 

2(h + 1) - 1 

1 

h + 1 

For n nodes, we cannot do better than O(log n) 
height and we want to avoid O(n) height 
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Calculating height 

What is the height of a tree with root  root? 
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int treeHeight(Node root) { 
 
   ??? 
 
 
} 



Calculating height 
What is the height of a tree with root  root? 
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int treeHeight(Node root) { 
  if(root == null) 
    return -1; 
  return 1 + max(treeHeight(root.left), 
                 treeHeight(root.right)); 
} 

Running time for tree with n nodes: O(n) – single pass over tree 
 

Note: non-recursive is painful – need your own stack of pending 
nodes; much easier to use recursion’s call stack 



Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 
 
• Pre-order: root, left subtree, right subtree 
 + * 2 4 5 

 

• In-order: left subtree, root, right subtree 
 2 * 4 + 5 

 

• Post-order: left subtree, right subtree, root 
 2 4 * 5 + 

+ 

* 

2 4 

5 

(an expression tree) 
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More on  traversals 

void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

A 

B 

D E 

C 

F G 
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    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 
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B 

D E 

C 

F G 

Spring 2016 24 CSE 373 Algorithms and Data Structures 

    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 



More on  traversals 
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B 

D E 

C 

F G 
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    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 



More on  traversals 

void inOrderTraversal(Node t){ 
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D E 

C 

F G 
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    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

✓ 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 



More on  traversals 
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A 

B 

D E 

C 

F G 
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    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

✓ 

✓ 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 



More on  traversals 

void inOrderTraversal(Node t){ 
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    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 

✓ 

✓ ✓ 



More on  traversals 

void inOrderTraversal(Node t){ 
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D E 

C 

F G 
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    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 

✓ 

✓ ✓ 

✓ 



More on  traversals 
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A 

B 

D E 

C 

F G 
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    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 

✓ 

✓ ✓ 

✓ 



More on  traversals 
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    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 

✓ 

✓ ✓ 

✓ 

✓ 

✓ 
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    = current node = processing (on the call stack) 
     
    = completed node 

A A 

A 

    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 

✓ 

✓ ✓ 

✓ 

✓ 

✓ ✓ 



More on  traversals 

void preOrderTraversal(Node t){ 
  if(t != null) { 
    process(t.element);  
    preOrderTraversal(t.left); 
    preOrderTraversal(t.left) 
  } 
} 

A 

B 

D E 

C 

F G 
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    = current node = processing (on the call stack) 
     
    = completed node = element has been processed 

A A 

A ✓ 



Preorder Exercise 
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Q 

R S 

T U 

v 

w 
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