
CSE373: Data Structures & Algorithms

Lecture 5: Dictionary ADTs; Binary Trees

Linda Shapiro
Spring 2016

Today’s Outline

Announcements
- Homework 1 due TODAY at 11:59 pm
- Homework 2 out (paper and pencil assignment)

- Due in class Wednesday April 13 at the START of class

Today’s Topics
• Finish Asymptotic Analysis
• Dictionary ADT (a.k.a. Map): associate keys with values

– Extremely common
• Binary Trees

Spring 2016 2 CSE 373 Algorithms and Data Structures

Summary of Asymptotic Analysis

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

– Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper)

• The most common thing we will do is give an O upper bound to

the worst-case running time of an algorithm.

Spring 2016 3 CSE 373 Algorithms and Data Structures

g(n) ≤ f(n) O

g(n) ≥ f(n) Ω

both θ

How to apply the definition easily

• Theory (mine)
• Let g(n) = c1*g1(n) + c2*g2(n) + ... + ck*gk(n) + c0
• Suppose the functions g1, g2, ... gk are already arranged in

order with highest complexity at the far left.
• Select the LARGEST of the constants C = max(c1, c2, ..ck, c0)
• Then g(n) ≤ C*g1(n) + C*g2(n) + ... + C*gk(n) + C
• Or g(n) ≤ C(g1(n) + g2(n) + ... + gk(n) + 1)
• But g1(n) is bigger than g2(n) and all the others beyond some

known n0.
• So g(n) ≤ C(g1(n) + g1(n) + ... +g1(n) + g1(n))
• Or g(n) ≤ C(k+1)*g1(n) = C’*g1(n) for all n greater than n0.

Spring 2016 4 CSE 373 Algorithms and Data Structures

Example

Spring 2016 CSE 373 Algorithms and Data Structures 5

g(n) = 25 n4 + 30 n2 + 100 nlogn + 54

g(n) ≤ 100 n4 + 100n2 + 100 nlogn + 100

g(n) ≤ 100(n4 + n2 + nlogn + 1)

g(n) ≤ 100(n4 + n4 + n4 + n4)

g(n) ≤ 100*4*n4

g(n) ≤ 400*n4 for all n ≥ 1

Big-Oh Caveats

• Asymptotic complexity focuses on behavior for large n and is
independent of any computer / coding trick

• But you can “abuse” it to be misled about trade-offs

• Example: n1/10 vs. log n
– Asymptotically n1/10 grows more quickly
– But the “cross-over” point is around 5 * 1017

– So if you have input size less than 258, prefer n1/10

• For small n, an algorithm with worse asymptotic complexity
might be faster
– If you care about performance for small n then the constant

factors can matter

Spring 2016 6 CSE 373 Algorithms and Data Structures

Addendum: Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical
foundation
– Examine the algorithm itself, not the implementation
– Reason about (even prove) performance as a function of n

• Timing also has its place

– Compare implementations
– Focus on data sets you care about (versus worst case)
– Determine what the constant factors “really are”

Spring 2016 7 CSE 373 Algorithms and Data Structures

Let’s take a breath

• So far we’ve covered
– Some simple ADTs: stacks, queues, lists
– Some math (proof by induction)
– How to analyze algorithms
– Asymptotic notation (Big-Oh)

• Coming up….
– Many more ADTs

• Starting with dictionaries

Spring 2016 8 CSE 373 Algorithms and Data Structures

The Dictionary (a.k.a. Map) ADT

• Data:
– set of (key, value) pairs
– keys must be comparable

• Operations:

– insert(key,value)
– find(key)
– delete(key)
– …

• ezgi
Ezgi Mercan

 OH: Thurs 10.30-11.30
 …

• mert

Mert Sagalm
 OH: TTH 3.30-4.30
 …

• bran

Bran Hagger
 OH: Mon 10.00-11.00
 …

insert(ezgi, ….)

find(bran)
Bran Hagger, …

Will tend to emphasize the keys;
don’t forget about the stored values

Spring 2016 9 CSE 373 Algorithms and Data Structures

A Modest Few Uses

Any time you want to store information according to some key and
be able to retrieve it efficiently
– Lots of programs do that!

• Search: inverted indexes, phone directories, …
• Networks: router tables
• Operating systems: page tables
• Compilers: symbol tables
• Databases: dictionaries with other nice properties
• Biology: genome maps
• …
 Possibly the most widely used ADT

Spring 2016 10 CSE 373 Algorithms and Data Structures

key | attr1 | attr2 | attr3
 k1 | v11 | v12 | v13
 k2 | v21 | v22 | v23

Simple implementations
For dictionary with n key/value pairs

 insert find delete
• Unsorted linked-list

• Unsorted array

• Sorted linked list

• Sorted array

* Unless we need to check for duplicates

We’ll see a Binary Search Tree (BST) probably does better
 but not in the worst case (unless we keep it balanced)

Spring 2016 11 CSE 373 Algorithms and Data Structures

O(1)* O(n) O(n)

O(n) O(n)

O(n) O(n) O(n)

O(1)*

O(n) O(n) O(log n)

Lazy Deletion

A general technique for making delete as fast as find:
– Instead of actually removing the item just mark it deleted

Plusses:
– Simpler
– Can do removals later in batches
– If re-added soon thereafter, just unmark the deletion

Minuses:
– Extra space for the “is-it-deleted” flag
– Data structure full of deleted nodes wastes space
– May complicate other operations

Spring 2016 12 CSE 373 Algorithms and Data Structures

10 12 24 30 41 42 44 45 50

Better dictionary data structures

There are many good data structures for (large) dictionaries

1. Binary trees
2. AVL trees

– Binary search trees with guaranteed balancing

3. B-Trees
– Also always balanced, but different and shallower
– B-Trees are not the same as Binary Trees

• B-Trees generally have large branching factor

4. Hash Tables
– Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

Spring 2016 13 CSE 373 Algorithms and Data Structures

Tree terms (review?)

Spring 2016 14 CSE 373 Algorithms and Data Structures

A

E

B

D F

C

G

I H

L J M K N

Tree T

Root (tree)
Leaves (tree)
Children (node)
Parent (node)
Siblings (node)
Ancestors (node)
Descendents (node)
Subtree (node)

Depth (node)
Height (tree)
Degree (node)
Branching factor (tree)

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4

4

More tree terms

• There are many kinds of trees
– Every binary tree is a tree
– Every list is kind of a tree (think of “next” as the one child)

• There are many kinds of binary trees

– Every binary search tree is a binary tree
– Later: A binary heap is a different kind of binary tree

• A tree can be balanced or not

– A balanced tree with n nodes has a height of O(log n)
– Different tree data structures have different “balance

conditions” to achieve this

Spring 2016 15 CSE 373 Algorithms and Data Structures

Kinds of trees

Certain terms define trees with specific structure

• Binary tree: Each node has at most 2 children (branching factor 2)
• n-ary tree: Each node has at most n children (branching factor n)
• Perfect tree: Each row completely full
• Complete tree: Each row completely full except maybe the bottom

row, which is filled from left to right

Spring 2016 16 CSE 373 Algorithms and Data Structures

What is the height of a perfect binary tree with n nodes?
A complete binary tree?

log2n

Binary Trees

• Binary tree: Each node has at most 2 children (branching factor 2)

• Binary tree is
– A root (with data)
– A left subtree that’s a binary tree
– A right subtree that’s a binary tree

• These subtrees may be empty.
• Representation:

A

B

D E

C

F

H G

J I

Data
right

pointer
left

pointer

• For a dictionary, data will include a
key and a value

Spring 2016 17 CSE 373 Algorithms and Data Structures

Binary Tree Representation

Spring 2016 18 CSE 373 Algorithms and Data Structures

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

2h

2(h + 1) - 1

1

h + 1

For n nodes, we cannot do better than O(log n)
height and we want to avoid O(n) height

Spring 2016 19 CSE 373 Algorithms and Data Structures

Calculating height

What is the height of a tree with root root?

Spring 2016 20 CSE 373 Algorithms and Data Structures

int treeHeight(Node root) {

 ???

}

Calculating height
What is the height of a tree with root root?

Spring 2016 21 CSE 373 Algorithms and Data Structures

int treeHeight(Node root) {
 if(root == null)
 return -1;
 return 1 + max(treeHeight(root.left),
 treeHeight(root.right));
}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending
nodes; much easier to use recursion’s call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree
 + * 2 4 5

• In-order: left subtree, root, right subtree
 2 * 4 + 5

• Post-order: left subtree, right subtree, root
 2 4 * 5 +

+

*

2 4

5

(an expression tree)

Spring 2016 22 CSE 373 Algorithms and Data Structures

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 23 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 24 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 25 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 26 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 27 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

✓

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 28 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 29 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 30 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 31 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

Spring 2016 32 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

✓

✓ ✓

More on traversals

void preOrderTraversal(Node t){
 if(t != null) {
 process(t.element);
 preOrderTraversal(t.left);
 preOrderTraversal(t.left)
 }
}

A

B

D E

C

F G

Spring 2016 33 CSE 373 Algorithms and Data Structures

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

Preorder Exercise

Spring 2016 CSE 373 Algorithms and Data Structures 34

Q

R S

T U

v

w

	CSE373: Data Structures & Algorithms��Lecture 5: Dictionary ADTs; Binary Trees
	Today’s Outline
	Summary of Asymptotic Analysis
	How to apply the definition easily
	Example
	Big-Oh Caveats
	Addendum: Timing vs. Big-Oh Summary
	Let’s take a breath
	The Dictionary (a.k.a. Map) ADT
	A Modest Few Uses
	Simple implementations
	Lazy Deletion
	Better dictionary data structures
	Tree terms (review?)
	More tree terms
	Kinds of trees
	Binary Trees
	Binary Tree Representation
	Binary Trees: Some Numbers
	Calculating height
	Calculating height
	Tree Traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	More on traversals
	Preorder Exercise

