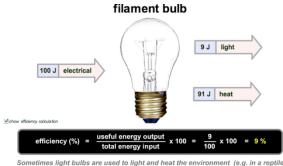


CSE373: Data Structures and Algorithms

Lecture 4: Asymptotic Analysis

Linda Shapiro Spring 2016

Efficiency



Sometimes light bulbs are used to light and heat the environment (e.g. in a rep house or vivarium). In this situation the efficiency would be virtually 100 %.

- What does it mean for an algorithm to be efficient?
 - We primarily care about time (and sometimes space)
- Is the following a good definition?
 - "An algorithm is efficient if, when implemented, it runs quickly on real input instances"
 - What does "quickly" mean?
 - What constitutes "real input?"
 - How does the algorithm scale as input size changes?

Gauging efficiency (performance)

- Uh, why not just run the program and time it?
 - Too much *variability*, not reliable or *portable*:
 - Hardware: processor(s), memory, etc.
 - OS, Java version, libraries, drivers
 - Other programs running
 - Implementation dependent
 - Choice of input
 - Testing (inexhaustive) may miss worst-case input
 - Timing does not explain relative timing among inputs (what happens when n doubles in size)
- Often want to evaluate an algorithm, not an implementation
 - Even before creating the implementation ("coding it up")

Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

We will focus on large inputs because probably any algorithm is "plenty good" for small inputs (if *n* is 10, probably anything is fast)

Time difference really shows up as n grows

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

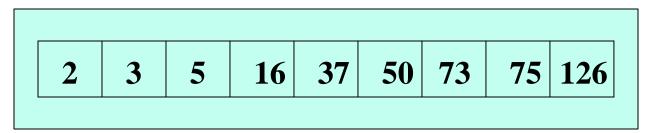
Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

Can do analysis before coding!

We usually care about worst-case running times

- Has proven reasonable in practice
 - Provides some guarantees
- Difficult to find a satisfactory alternative
 - What about average case?
 - Difficult to express full range of input
 - Could we use randomly-generated input?
 - May learn more about generator than algorithm

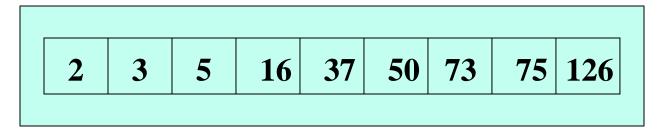
Example



Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
   ???
}
```

Linear search



Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
   for(int i=0; i < arr.length; ++i)
      if(arr[i] == k)
      return true;
   return false;
}</pre>
```

Best case?

k is in arr[0] c1 steps

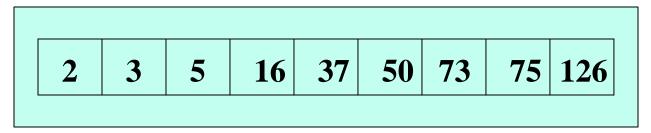
= O(1)

Worst case?

k is not in arr c2*(arr.length)

= O(arr.length)

Binary search



Find an integer in a sorted array

Can also be done non-recursively but "doesn't matter" here

Binary search

```
Best case: c1 steps = O(1)
Worst case: T(n) = c2 steps + T(n/2) where n is hi-lo
    O(log n) where n is array.length
```

Solve recurrence equation to know that...

Solving Recurrence Relations

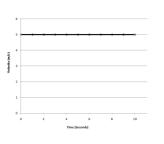
1. Determine the recurrence relation. What is the base case?

$$- T(n) = c2 + T(n/2)$$
 $T(1) = c1$ first eqn.

2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions*.

- 3. Find a closed-form expression by setting the argument of T to a value (e.g. $n/(2^k) = 1$) which reduces the problem to a base case
 - $n/(2^k) = 1$ means $n = 2^k$ means $k = \log_2 n$
 - So $T(n) = c2 \log_2 n + T(1)$
 - So $T(n) = c2 \log_2 n + c1$ (get to base case and do it)
 - So T(n) is $O(\log n)$

Ignoring constant factors



- So binary search is $O(\log n)$ and linear search is O(n)
 - But which is faster?
- Could depend on constant factors
 - How many assignments, additions, etc. for each n
 - E.g. T(n) = 5,000,000n vs. $T(n) = 5n^2$

vs.
$$T(n) = 5n^2$$

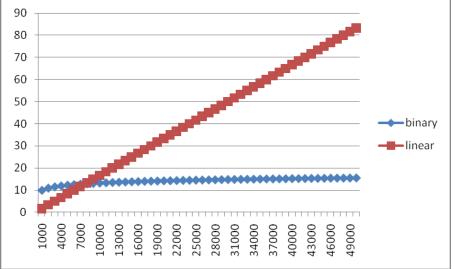
- And could depend on overhead unrelated to n
 - E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n
- But there exists some n_0 such that for all $n > n_0$ binary search wins
- Let's play with a couple plots to get some intuition...

Example

- Let's try to "help" linear search
 - Run it on a computer 100x as fast (say 2016 model vs. 1994)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search

not enough iterations to show it

enough iterations to show it



Big-Oh relates functions

We use O on a function f(n) (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So
$$(3n^2+17)$$
 is in $O(n^2)$

 $-3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

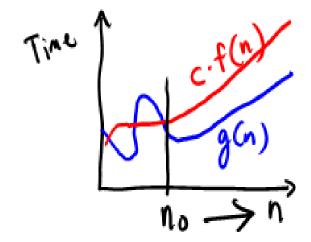
$$- (3n^2+17)$$
 is $O(n^2)$

$$- (3n^2 + 17) = O(n^2)$$

But we would never say
$$O(n^2) = (3n^2 + 17)$$

Big-O, formally

$$g(n) \le c f(n)$$
 for all $n \ge n_0$



- To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"
 - Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^2$ c=5 and $n_0 = 10$ is more than good enough $(3*10^2) + 17 \le 5*10^2$ so $3n^2 + 17$ is $O(n^2)$
- This is "less than or equal to"
 - So $3n^2+17$ is also $O(n^5)$ and $O(2^n)$ etc.
 - But usually we're interested in the tightest upper bound.

Example 1, using formal definition

- Let g(n) = 1000n and f(n) = n
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - We can just let c = 1000.
 - That works for any n_0 , such as $n_0 = 1$.
 - $-g(n) = 1000n \le c f(n) = 1000n$ for all $n \ge 1$.

$$g(n) \le c f(n)$$
 for all $n \ge n_0$

Example 1', using formal definition

- Let g(n) = 1000n and $f(n) = n^2$
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - The "cross-over point" is *n*=1000
 - g(n) = 1000*1000 and $f(n) = 1000^2$
 - So we can choose n_0 =1000 and c=1
 - Then $g(n) = 1000n \le c f(n) = 1n^2$ for all $n \ge 1000$

$$g(n) \le c f(n)$$
 for all $n \ge n_0$

Examples 1 and 1'

- Which is it?
- Is g(n) = 1000n called f(n) or $f(n^2)$?

- By definition, it can be either one.
- We prefer to use the smallest one.

Example 2, using formal definition

- Let $g(n) = n^4$ and $f(n) = 2^n$
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - We can choose n_0 =20 and c=1
 - $g(n) = 20^4 \text{ vs. } f(n) = 1*2^{20}$
 - 160,000 vs 1,048,576
 - $g(n) = n^4 \le c f(n) = 1*2^n \text{ for all } n \ge 20$
 - If I were doing a complexity analysis, would I pick $O(2^n)$?

$$g(n) \le c f(n)$$
 for all $n \ge n_0$

Comparison

•	n	n ⁴	2 ⁿ
•	10	10,000	1,024
•	20	160,000	1,048,576
•	30	810,000	1,073,741,824
•	40	2,560,000	1.0995x10 ¹²

What's with the c

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Consider:

```
g(n) = 7n + 5f(n) = n
```

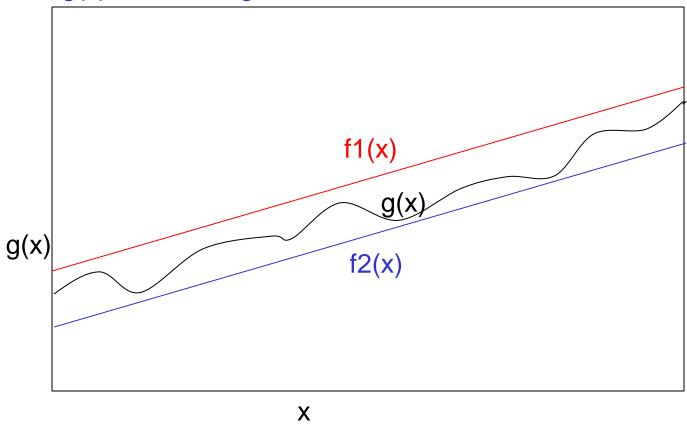
- These have the same asymptotic behavior (linear)
 - So g(n) is in O(f(n)) even through g(n) is always larger
 - The c allows us to provide a coefficient so that $g(n) \le c f(n)$
- In this example:
 - To prove g(n) is in O(f(n)), have c = 12, n₀ = 1
 (7*1)+5 ≤ 12*1

What you can drop

- Eliminate coefficients because we don't have units anyway
 - $-3n^2$ versus $5n^2$ doesn't mean anything when we have not specified the cost of constant-time operations
 - Both are $O(n^2)$
- Eliminate low-order terms because they have vanishingly small impact as *n* grows
 - $-5n^5 + 40n^4 + 30n^3 + 20n^2 + 10^n + 1$ is ?
 - $O(n^5)$
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - -3^{n} is not $O(2^{n})$

Upper and Lower Bounds

f1(x) is an upper bound for g(x); f2(x) is a lower bound. $g(x) \le f1(x)$ and $g(x) \ge f2(x)$.



More Asymptotic* Notation

*approaching arbitrarily closely

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$
- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to f(n)
 - g(n) is in $\theta(f(n))$ if **both** g(n) is in O(f(n)) **and** g(n) is in $\Omega(f(n))$

Correct terms, in theory

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- Since a linear algorithm is also $O(n^5)$, it's tempting to say "this algorithm is exactly O(n)"
- That doesn't mean anything, say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
 - For all c, there exists an n_0 such that... \leq
 - Example: array sum is O(n) and $o(n^2)$ but not o(n)
- "little-omega": intersection of "big-Omega" and not "big-Theta"
 - For all c, there exists an n_0 such that... \geq
 - Example: array sum is O(n) and $\omega(\log n)$ but not $\omega(n)$

What we are analyzing: Complexity

- The most common thing to do is give an O upper bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
 - Common: O(log n) running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common (but very good to know): the find-in-sorted-array **problem** is $\Omega(\log n)$ in the worst-case (lower bound)
 - No algorithm can do better
 - A problem cannot be O(f(n)) since you can always make a slower algorithm

Other things to analyze

- Space instead of time
 - Remember we can often use space to gain time

- Sometimes only if you assume something about the probability distribution of inputs
- Sometimes uses randomization in the algorithm
 - Will see an example with sorting
- Sometimes an amortized guarantee
 - Average time over any sequence of operations

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Addendum: Timing vs. Big-Oh Summary

- Big-oh is an essential part of computer science's mathematical foundation
 - Examine the algorithm itself, not the implementation
 - Reason about (even prove) performance as a function of n
- Timing also has its place
 - Compare implementations
 - Focus on data sets you care about (versus worst case)
 - Determine what the constant factors "really are"

Practice: What is the big-Oh complexity?

```
1. g(n) = 45nlogn + 2n^2 + 65
```

```
2. g(n) = 1000000n + .01*2^n
```

```
3. int sum = 0;
for (int i = 0; i < n; i=i+2){
    sum = sum + i;
}
```

```
4. int sum = 0;
for (int i = n; i > 1; i=i/2){
    sum = sum + i;
}
```