CSE373: Data Structures and Algorithms Lecture 4: Asymptotic Analysis

Linda Shapiro
Spring 2016

Efficiency

- What does it mean for an algorithm to be efficient?
- We primarily care about time (and sometimes space)
- Is the following a good definition?
- "An algorithm is efficient if, when implemented, it runs quickly on real input instances"
- What does "quickly" mean?
- What constitutes "real input?"
- How does the algorithm scale as input size changes?

Gauging efficiency (performance)

- Uh, why not just run the program and time it?
- Too much variability, not reliable or portable:
- Hardware: processor(s), memory, etc.
- OS, Java version, libraries, drivers
- Other programs running
- Implementation dependent
- Choice of input
- Testing (inexhaustive) may miss worst-case input
- Timing does not explain relative timing among inputs (what happens when n doubles in size)
- Often want to evaluate an algorithm, not an implementation
- Even before creating the implementation ("coding it up")

Comparing algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is performance: for sufficiently large inputs, runs in less time (our focus) or less space

We will focus on large inputs because probably any algorithm is "plenty good" for small inputs (if n is 10, probably anything is fast)

- Time difference really shows up as n grows

Answer will be independent of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

We usually care about worst-case running times

- Has proven reasonable in practice
- Provides some guarantees
- Difficult to find a satisfactory alternative
- What about average case?
- Difficult to express full range of input
- Could we use randomly-generated input?
- May learn more about generator than algorithm

Example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```


Linear search

$$
\begin{array}{l|l|l|l|l|l|l|l|l|}
2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    for(int i=0; i < arr.length; ++i) = O(1)
        if(arr[i] == k)
        return true;
    return false;
}
```

Best case?
k is in arr[0]
c1 steps
$=O(1)$

Worst case?
k is not in arr
c2*(arr.length)
$=O$ (arr.length)

Binary search

2	3	5	16	37	50	73	75	126

Find an integer in a sorted array

- Can also be done non-recursively but "doesn't matter" here

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);

\section*{Binary search}

Best case: c1 steps \(=O(1)\)
Worst case: \(T(n)=c 2\) steps \(+T(n / 2)\) where \(n\) is hi-lo
- \(O(\log n)\) where \(n\) is array. length
- Solve recurrence equation to know that...
```

// requires array is sorted
// returns whether k is in array
boolean find (int[]arr, int k)\{
return help(arr, $k, 0, a r r . l e n g t h) ;$
\}
boolean help(int[]arr, int k, int lo, int hi) \{
int mid $=(h i+l o) / 2$;
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);
\}

```

\section*{Solving Recurrence Relations}
1. Determine the recurrence relation. What is the base case?
\[
-\quad T(n)=c 2+T(n / 2) \quad T(1)=c 1 \quad \text { first eqn. }
\]
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
\[
\begin{aligned}
-\quad T(n) & =c 2+c 2+T(n / 4) & & 2^{\text {nd }} \text { eqn. } \\
& =c 2+c 2+c 2+T(n / 8) & & 3^{\text {rd }} \text { eqn. } \\
& =\ldots & & \\
& =c 2(k)+T\left(n /\left(2^{k}\right)\right) & & k t h e q n .
\end{aligned}
\]
3. Find a closed-form expression by setting the argument of \(T\) to a value (e.g. \(\left.n /\left(2^{k}\right)=1\right)\) which reduces the problem to a base case
\[
-\quad n /\left(2^{k}\right)=1 \text { means } n=2^{k} \text { means } k=\log _{2} n
\]
- \(\quad\) So \(T(n)=c 2 \log _{2} n+T(1)\)
- So \(T(n)=c 2 \log _{2} n+c 1\) (get to base case and do it)
- \(\quad\) So \(T(n)\) is \(O(\log n)\)

\section*{Ignoring constant factors}
- So binary search is \(O(\log n)\) and linear search is \(O(n)\)
- But which is faster?
- Could depend on constant factors
- How many assignments, additions, etc. for each \(n\)
- E.g. \(T(n)=5,000,000 n\)
vs. \(T(n)=5 n^{2}\)
- And could depend on overhead unrelated to \(n\)
- E.g. \(T(n)=5,000,000+\log n\) vs. \(T(n)=10+n\)
- But there exists some \(n_{0}\) such that for all \(n>n_{0}\) binary search wins
- Let's play with a couple plots to get some intuition...

\section*{Example}
- Let's try to "help" linear search
- Run it on a computer 100x as fast (say 2016 model vs. 1994)
- Use a new compiler/language that is \(3 x\) as fast
- Be a clever programmer to eliminate half the work
- So doing each iteration is 600 x as fast as in binary search
not enough iterations to show it

enough iterations to show it


\section*{Big-Oh relates functions}

We use \(O\) on a function \(f(n)\) (for example \(n^{2}\) ) to mean the set of functions with asymptotic behavior less than or equal to \(f(n)\)

So \(\left(3 n^{2}+17\right)\) is in \(O\left(n^{2}\right)\)
\(-3 n^{2}+17\) and \(n^{2}\) have the same asymptotic behavior

Confusingly, we also say/write:
\(-\left(3 n^{2}+17\right)\) is \(O\left(n^{2}\right)\)
\(-\left(3 n^{2}+17\right)=O\left(n^{2}\right)\)

But we would never say \(O\left(n^{2}\right)=\left(3 n^{2}+17\right)\)

\section*{Big-O, formally}

Definition: \(\mathrm{g}(n)\) is in \(\mathrm{O}(\mathrm{f}(n))\) if there exist positive constants \(c\) and \(n_{0}\) such that
\[
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
\]

- To show \(g(n)\) is in \(\mathrm{O}(\mathrm{f}(n)\) ), pick a c large enough to "cover the constant factors" and \(n_{0}\) large enough to "cover the lower-order terms"
- Example: Let \(g(n)=3 n^{2}+17\) and \(f(n)=n^{2}\)
\(c=5\) and \(n_{0}=10\) is more than good enough
\[
\left(3^{*} 10^{2}\right)+17 \leq 5 * 10^{2} \quad \text { so } \quad 3 n^{2}+17 \text { is } \mathrm{O}\left(n^{2}\right)
\]
- This is "less than or equal to"
- So \(3 n^{2}+17\) is also \(O\left(n^{5}\right)\) and \(O\left(2^{n}\right)\) etc.
- But usually we're interested in the tightest upper bound.

\section*{Example 1, using formal definition}
- Let \(g(n)=1000 n\) and \(f(n)=n\)
- To prove \(g(n)\) is in \(\mathrm{O}(\mathrm{f}(n))\), find a valid \(c\) and \(n_{0}\)
- We can just let c = 1000.
- That works for any \(\mathrm{n}_{0}\), such as \(\mathrm{n}_{0}=1\).
\(-g(n)=1000 n \leq c f(n)=1000 n\) for all \(n \geq 1\).

Definition: \(\mathrm{g}(n)\) is in \(\mathrm{O}(\mathrm{f}(n))\) if there exist positive constants \(c\) and \(n_{0}\) such that
\[
\mathrm{g}(n) \leq c \mathrm{f}(n) \quad \text { for all } n \geq n_{0}
\]

\section*{Example 1', using formal definition}
- Let \(\mathrm{g}(n)=1000 n\) and \(\mathrm{f}(n)=n^{2}\)
- To prove \(g(n)\) is in \(\mathrm{O}(\mathrm{f}(n))\), find a valid \(c\) and \(n_{0}\)
- The "cross-over point" is \(n=1000\)
- \(\mathrm{g}(n)=1000 * 1000\) and \(\mathrm{f}(n)=1000^{2}\)
- So we can choose \(n_{0}=1000\) and \(c=1\)
- Then \(\mathrm{g}(\mathrm{n})=1000 \mathrm{n} \leq \mathrm{c} f(n)=1 n^{2}\) for all \(\mathrm{n} \geq 1000\)

Definition: \(\mathrm{g}(n)\) is in \(\mathrm{O}(\mathrm{f}(n))\) if there exist positive constants \(c\) and \(n_{0}\) such that
\[
\mathrm{g}(n) \leq c \mathrm{f}(n) \quad \text { for all } n \geq n_{0}
\]

\section*{Examples 1 and 1'}
- Which is it?
- Is \(g(n)=1000 n\) called \(f(n)\) or \(f\left(n^{2}\right)\) ?
- By definition, it can be either one.
- We prefer to use the smallest one.

\section*{Example 2, using formal definition}
- Let \(\mathrm{g}(n)=n^{4}\) and \(\mathrm{f}(n)=2^{n}\)
- To prove \(\mathrm{g}(n)\) is in \(\mathrm{O}(\mathrm{f}(n))\), find a valid \(c\) and \(n_{0}\)
- We can choose \(n_{0}=20\) and \(c=1\)
- \(g(n)=20^{4}\) vs. \(f(n)=1 * 2^{20}\)
- 160,000 vs 1,048,576
- \(\quad \mathrm{g}(\mathrm{n})=n^{4} \leq c f(n)=1^{*} 2^{\mathrm{n}}\) for all \(\mathrm{n} \geq 20\)
- If I were doing a complexity analysis, would I pick \(O\left(2^{n}\right)\) ?

Definition: \(\mathrm{g}(n)\) is in \(\mathrm{O}(\mathrm{f}(n))\) if there exist positive constants \(c\) and \(n_{0}\) such that
\[
\mathrm{g}(n) \leq c \mathrm{f}(n) \quad \text { for all } n \geq n_{0}
\]

\section*{Comparison}
- n
- 10
- 20
- 30
- 40
\(\mathrm{n}^{4}\)
10,000
160,000
810,000
\(2,560,000\)
\(2^{n}\)
\(2^{n}\)
1,024
\(1,048,576\)
\(1,073,741,824\)
\(1.0995 \times 10^{12}\)

\section*{What's with the c}
- The constant multiplier \(c\) is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Consider:
\[
\begin{aligned}
& g(n)=7 n+5 \\
& f(n)=n
\end{aligned}
\]
- These have the same asymptotic behavior (linear)
- So \(g(n)\) is in \(\mathrm{O}(\mathrm{f}(n))\) even through \(\mathrm{g}(n)\) is always larger
- The \(c\) allows us to provide a coefficient so that \(\mathrm{g}(n) \leq c \mathrm{f}(n)\)
- In this example:
- To prove \(g(n)\) is in \(O(f(n))\), have \(c=12, n_{0}=1\)
\[
(7 * 1)+5 \leq 12^{* 1}
\]

\section*{What you can drop}
- Eliminate coefficients because we don't have units anyway
- \(3 n^{2}\) versus \(5 n^{2}\) doesn't mean anything when we have not specified the cost of constant-time operations
- Both are \(\mathbf{O}\left(n^{2}\right)\)
- Eliminate low-order terms because they have vanishingly small impact as \(n\) grows
\(-5 n^{5}+40 n^{4}+30 n^{3}+20 n^{2}+10^{n}+1\) is ?
- O( \(\mathrm{n}^{5}\) )
- Do NOT ignore constants that are not multipliers
\(-n^{3}\) is not \(O\left(n^{2}\right)\)
\(-3^{n}\) is not \(O\left(2^{n}\right)\)

\section*{Upper and Lower Bounds}
\(\mathrm{f} 1(\mathrm{x})\) is an upper bound for \(\mathrm{g}(\mathrm{x})\); \(\mathrm{f} 2(\mathrm{x})\) is a lower bound. \(\mathrm{g}(\mathrm{x}) \leq \mathrm{f} 1\) ( x ) and \(\mathrm{g}(\mathrm{x}) \geq \mathrm{f} 2(\mathrm{x})\).


\section*{More Asymptotic* Notation}
*approaching arbitrarily closely
- Upper bound: \(O(f(n))\) is the set of all functions asymptotically less than or equal to \(f(n)\)
- \(g(n)\) is in \(O(f(n))\) if there exist constants \(c\) and \(n_{0}\) such that \(g(n) \leq c f(n)\) for all \(n \geq n_{0}\)
- Lower bound: \(\Omega(\mathrm{f}(n))\) is the set of all functions asymptotically greater than or equal to \(f(n)\)
- \(g(n)\) is in \(\Omega(f(n))\) if there exist constants \(c\) and \(n_{0}\) such that \(g(n) \geq c f(n)\) for all \(n \geq n_{0}\)
- Tight bound: \(\theta(f(n))\) is the set of all functions asymptotically equal to \(\mathrm{f}(n)\)
- \(g(n)\) is in \(\theta(f(n))\) if both \(g(n)\) is in \(O(f(n))\) and \(\mathrm{g}(n)\) is in \(\Omega(\mathrm{f}(n))\)

\section*{Correct terms, in theory}

A common error is to say \(O(f(n))\) when you mean \(\theta(f(n))\)
- Since a linear algorithm is also \(O\left(n^{5}\right)\), it's tempting to say "this algorithm is exactly \(O(n)\) "
- That doesn't mean anything, say it is \(\theta(n)\)
- That means that it is not, for example \(O(\log n)\)

Less common notation:
- "little-oh": intersection of "big-Oh" and not "big-Theta"
- For all c, there exists an \(n_{0}\) such that... \(\leq\)
- Example: array sum is \(\mathrm{O}(\mathrm{n})\) and \(o\left(n^{2}\right)\) but not \(o(n)\)
- "little-omega": intersection of "big-Omega" and not "big-Theta"
- For all \(c\), there exists an \(n_{0}\) such that... \(\geq\)
- Example: array sum is \(\mathrm{O}(\mathrm{n})\) and \(\omega(\log n)\) but not \(\omega(n)\)

\section*{What we are analyzing: Complexity}
- The most common thing to do is give an \(O\) upper bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
- Common: \(O(\log n)\) running-time in the worst-case
- Less common: \(\theta(1)\) in the best-case (item is in the middle)
- Less common (but very good to know): the find-in-sortedarray problem is \(\Omega(\log n)\) in the worst-case (lower bound)
- No algorithm can do better
- A problem cannot be \(O(f(n))\) since you can always make a slower algorithm

\section*{Other things to analyze}
- Space instead of time

- Remember we can often use space to gain time
- Average case
- Sometimes only if you assume something about the probability distribution of inputs
- Sometimes uses randomization in the algorithm
- Will see an example with sorting
- Sometimes an amortized guarantee
- Average time over any sequence of operations

\section*{Summary}

Analysis can be about:
- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

\section*{Addendum: Timing vs. Big-Oh Summary}
- Big-oh is an essential part of computer science's mathematical foundation
- Examine the algorithm itself, not the implementation
- Reason about (even prove) performance as a function of \(n\)
- Timing also has its place
- Compare implementations
- Focus on data sets you care about (versus worst case)
- Determine what the constant factors "really are"

\section*{Practice: What is the big-Oh complexity?}
1. \(g(n)=45 n \log n+2 n^{2}+65\)
2. \(g(n)=1000000 n+.01 * 2^{n}\)
3. int sum \(=0\);
\[
\text { for (int } \mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}=\mathrm{i}+2)\{
\]
\[
\text { sum }=\text { sum }+i ;
\]
\}
4. int sum \(=0\); for (int \(\mathrm{i}=\mathrm{n} ; \mathrm{i}>1\); \(\mathrm{i}=\mathrm{i} / 2\) ) \(\{\) sum = sum \(+i\);
\}```

