Today

- Homework 1 due 11:59 pm next Wednesday, April 6
- Review math essential to algorithm analysis
 - Proof by induction (review example)
 - Exponents and logarithms
 - Floor and ceiling functions
- Begin algorithm analysis

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis

Linda Shapiro Spring 2016

Mathematical induction

Suppose P(n) is some statement (mentioning integer *n*) Example: $n \ge n/2 + 1$

We can use induction to prove P(n) for all integers $n \ge n_0$. We need to

- 1. Prove the "base case" i.e. $P(n_0)$. For us n_0 is usually 1.
- 2. Assume the statement holds for P(k).
- 3. Prove the "inductive case" i.e. if P(k) is true, then P(k+1) is true.

Why we care:

To show an algorithm is correct or has a certain running time *no matter how big a data structure or input value is* (Our "*n*" will be the data structure or input size.)

Spring 2016

CSE 373: Data Structures & Algorithms

Review Example

P(n) = "the sum of the first *n* powers of 2 (starting at 2⁰) is 2ⁿ-1"

 $2^{0} + 2^{1} + 2^{2} + \ldots + 2^{n-1} = 2^{n} - 1.$

in other words: $1 + 2 + 4 + ... + 2^{n-1} = 2^n - 1$.

Review Example

P(n) = "the sum of the first *n* powers of 2 (starting at 2⁰) is 2ⁿ-1"

We will show that P(n) holds for all $n \ge 1$ Proof: By induction on n

Base case: n=1. Sum of first 1 power of 2 is 2^o, which equals 1.
 And for n=1, 2ⁿ-1 equals 1.

Review Example

P(n) = "the sum of the first *n* powers of 2 (starting at 2⁰) is 2ⁿ-1"

- Inductive case:
 - Assume P(k) is true i.e. the sum of the first k powers of 2 is 2^{k-1}
 - Show P(k+1) is true i.e. the sum of the first (k+1) powers of 2 is $2^{k+1}-1$

Using our assumption, we know the first k powers of 2 is $2^0 + 2^1 + 2^2 + \ldots + 2^{k-1} = 2^k - 1$

Add the next power of 2 to both sides...

 $2^{0} + 2^{1} + 2^{2} + \ldots + 2^{k-1} + 2^{k} = 2^{k} - 1 + 2^{k}$

We have what we want on the left; massage the right a bit:

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{k-1} + 2^{k} = 2(2^{k}) - 1$$

= $2^{k+1} - 1$ Success!

Mathematical Preliminaries

- The following N slides contain basic mathematics needed for analyzing algorithms.
- You should actually know this stuff.

• Hang in there!

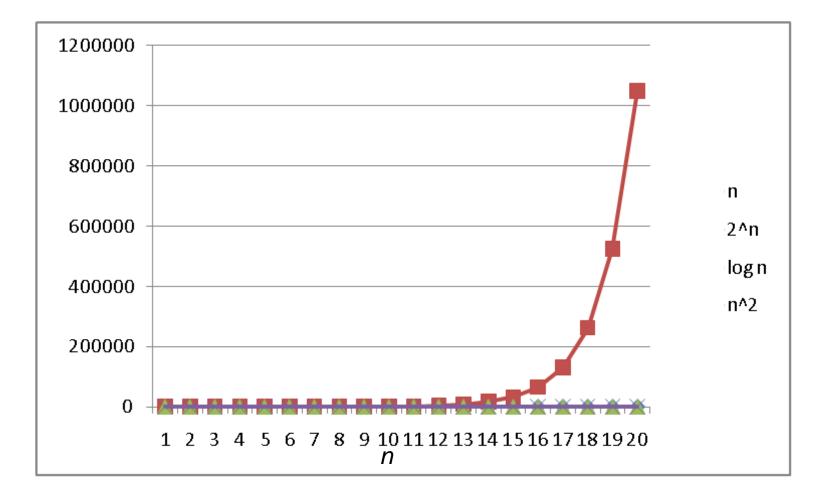
Logarithms and Exponents

- Definition: $\mathbf{x} = 2^{\mathbf{y}}$ if $\log_2 \mathbf{x} = \mathbf{y}$
 - $-8 = 2^3$, so $\log_2 8 = 3$
 - $-65536=2^{16}$, so $\log_2 65536=16$
- The exponent of a number says how many times to use the number in a multiplication. e.g. 2³ = 2 × 2 × 2 = 8
 (2 is used 3 times in a multiplication to get 8)
- A logarithm says how many of one number to multiply to get another number. It asks "what exponent produced this?"
 e.g. log₂8 = 3 (2 makes 8 when used 3 times in a multiplication)

Logarithms and Exponents

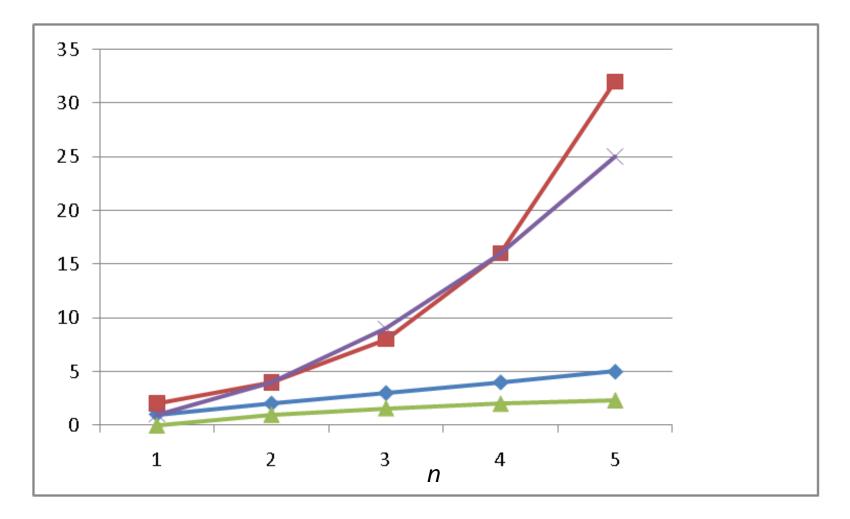
- Definition: $\mathbf{x} = 2^{\mathbf{y}}$ if $\log_2 \mathbf{x} = \mathbf{y}$
 - $-8 = 2^3$, so $\log_2 8 = 3$
 - $-65536=2^{16}$, so $\log_2 65536=16$
- Since so much is binary in CS, log almost always means log₂
- log₂ n tells you how many bits needed to represent n combinations.
- So, log_2 1,000,000 = "a little under 20" (19.9336)
- Logarithms and exponents are inverse functions. Just as exponents grow very quickly, logarithms grow very slowly.

Logarithms and Exponents: Big View



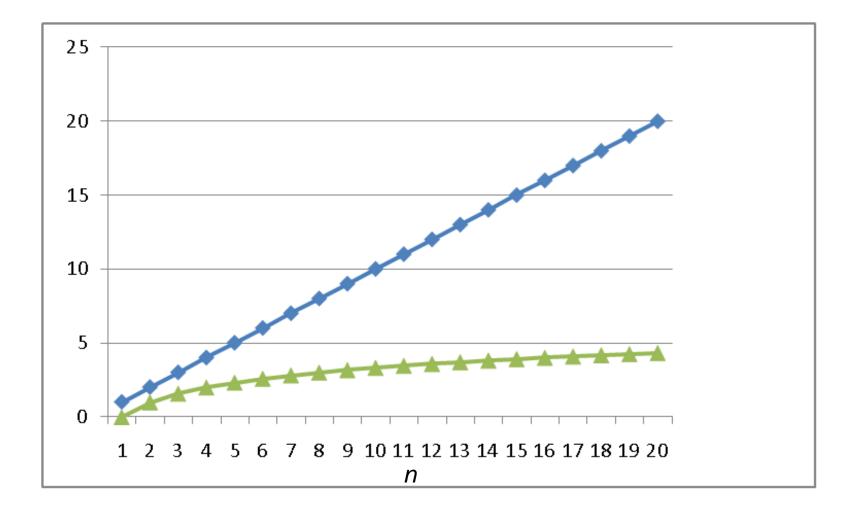
Spring 2016

Logarithms and Exponents: Zoom in

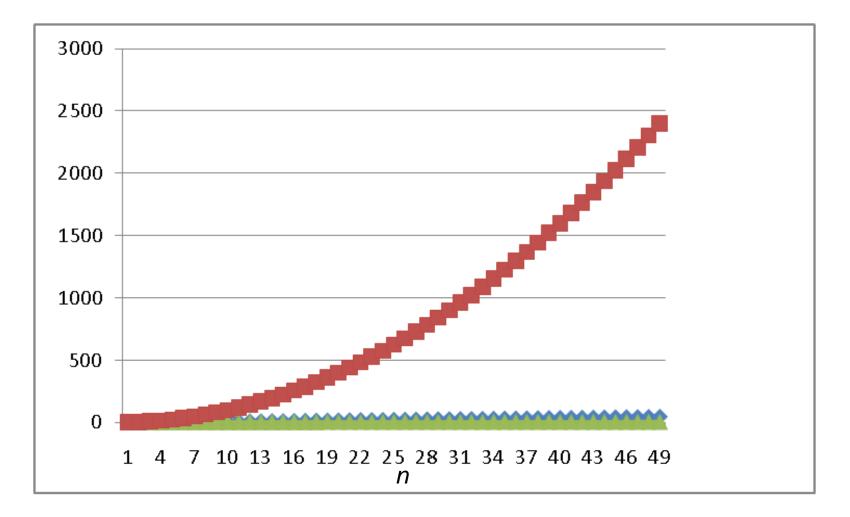


CSE 373: Data Structures & Algorithms

Logarithms and Exponents: just n, log n



Logarithms and Exponents: n, log n, n^2



Properties of logarithms

- log(A*B) = log A + log B
- $\log(N^k) = k \log N$
- log(A/B) = log A log B
- log(log x) is written log log x
 Grows as slowly as 2^{2^y} grows quickly
- $(\log x)(\log x)$ is written $\log^2 x$
 - It is greater than $\log x$ for all x > 2
 - It is not the same as log log x

Spring 2016

Log base doesn't matter much!

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general we can convert log bases via a constant multiplier
- To convert from base B to base A:

 $log_{B} x = (log_{A} x) / (log_{A} B)$ $log_{2} 1,000,000 = (log_{10} 1,000,000) / (log_{10} 2)$ $log_{2} 1,000,000 = 6 / .3010 = 19.9336$

• I use this because my calculator doesn't have log₂.

Spring 2016

Floor and ceiling

|X| Floor function: the largest integer $\leq X$ |2.7| = 2 |-2.7| = -3 |2| = 2|X| Ceiling function: the smallest integer $\geq X$ [2.3] = 3 [-2.3] = -2 [2] = 2

Facts about floor and ceiling

1.
$$X-1 < \lfloor X \rfloor \le X$$

2. $X \le \lceil X \rceil < X+1$
3. $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$ if n is an integer

 $\lfloor 5/2 \rfloor + \lceil 5/2 \rceil$ 2 3 5

Algorithm Analysis

As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.), we want to know

- How much longer does the algorithm take to run? (time)
- How much more memory does the algorithm need? (space)

Because the curves we saw are so different, often care about only "which curve we are like"

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs

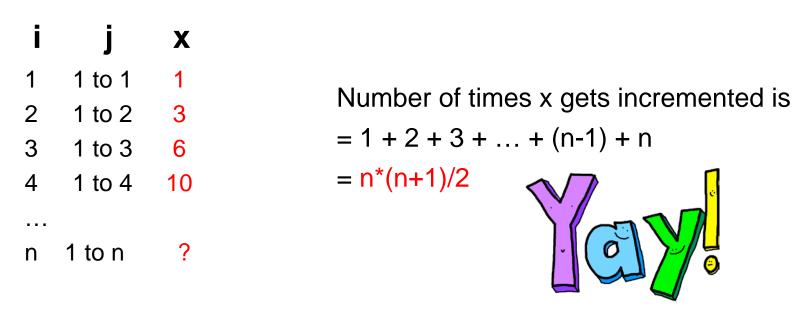
- Usually more important, naturally

Algorithm Analysis: A first example

• Consider the following program segment:

```
x:= 0;
for i = 1 to n do
  for j = 1 to i do
      x := x + 1;
```

• What is the value of x at the end?



CSE 373: Data Structures & Algorithms

Analyzing the loop

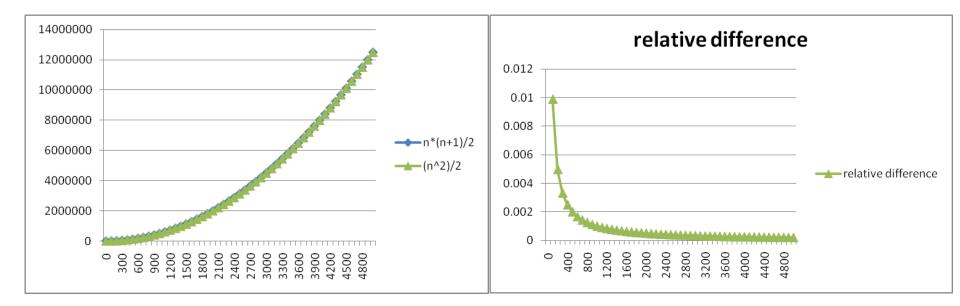
• Consider the following program segment:

```
x:= 0;
for i = 1 to n do
  for j = 1 to i do
      x := x + 1;
```

- The total number of loop iterations is n*(n+1)/2
 - This is a very common loop structure, worth memorizing
 - This is proportional to n^2 , and we say $O(n^2)$, "big-Oh of n^2 "
 - $n^{*}(n+1)/2 = (n^{2}+n)/2 = 1/2n^{2} + 1/2n$
 - The n² term dominates the n term.
 - For large enough n, the lower order and constant terms are irrelevant, as are the assignment statements
 - See plot... (n²+ n)/2 vs. just n²/2

Lower-order terms don't matter

 $n^{*}(n+1)/2$ vs. just $n^{2}/2$



We just say $O(n^2)$

Big-O: Common Names

<i>O</i> (1)	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>)
$O(\log n)$	logarithmic
O(<i>n</i>)	linear
O(n log <i>n</i>)	"n log <i>n</i> "
O(<i>n</i> ²)	quadratic
<i>O</i> (<i>n</i> ³)	cubic
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is any constant)
<i>O</i> (<i>k</i> ⁿ)	exponential (where <i>k</i> is any constant > 1)
O(n!)	factorial

Note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to *k*ⁿ for some *k*>1"

Big-O running times

• For a processor capable of one million instructions per second

	n	$n \log_2 n$	n ²	n ³ .	1.5 ⁿ	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

For a modern processor, how many instructions per second? Something like 2 billion.

Analyzing code

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.

(This is an approximation of reality: a very useful "lie".)

Consecutive statements	Sum of times
Conditionals	Time of test plus slower branch
Loops	Sum of iterations
Calls	Time of call's body
Recursion	Solve recurrence equation
	(next lecture)

Analyzing code

- 1. Add up time for all parts of the algorithm e.g. number of iterations = $(n^2 + n)/2$
- 2. Eliminate low-order terms i.e. eliminate n: (n²)/2
- 3. Eliminate coefficients i.e. eliminate 1/2: (n²) : Result is O(n²)

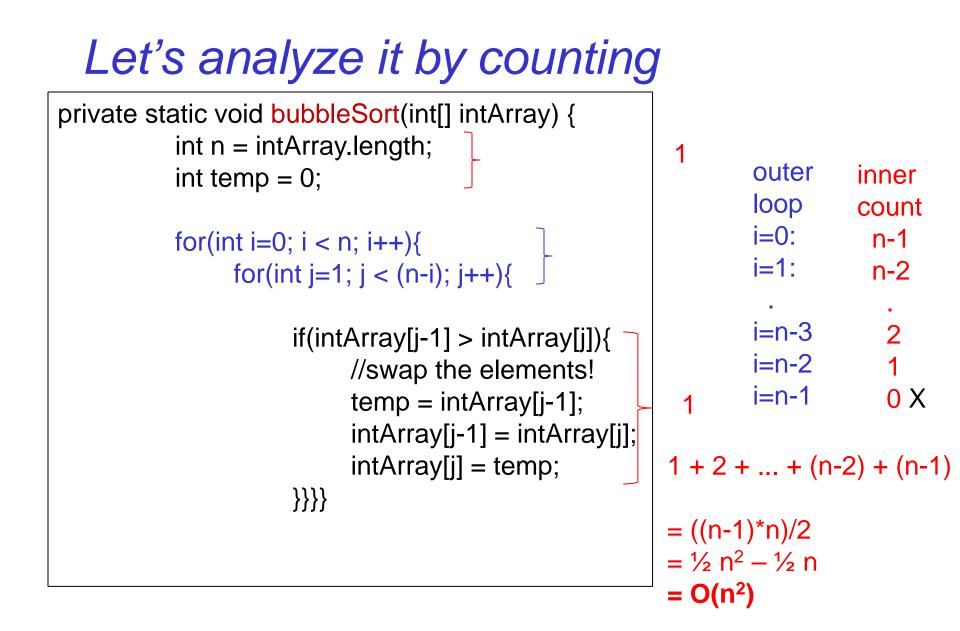
Examples:

- -4n+5 =
- $0.5n \log n + 2n + 7$
- $n^3 + 2^n + 3n$
- 365

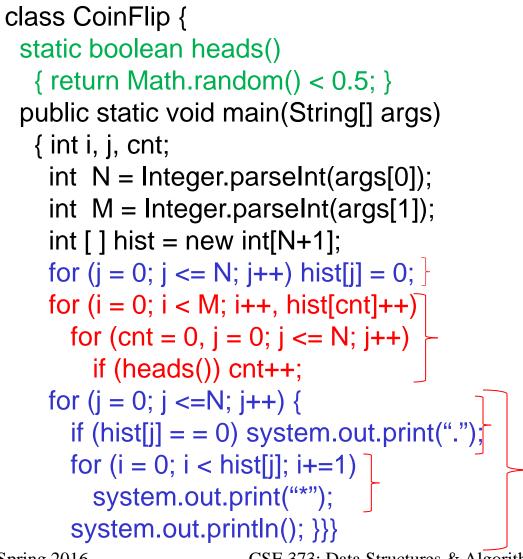
= O(n)= $O(n \log n)$ = $O(2^n)$ = O(1)

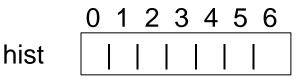
Try a Java sorting program

```
private static void bubbleSort(int[] intArray) {
                                                               5 | 3 | 10 | 4
           int n = intArray.length;
           int temp = 0;
                                                               3 | 5 | 10 | 4
           for(int i=0; i < n; i++){
                 for(int j=1; j < (n-i); j++){
                                                               3 | 5 | 10 | 4
                       if(intArray[j-1] > intArray[j]){
                                                                   1,1
                            //swap the elements!
                                                               3 | 5 | 4 | 10
                            temp = intArray[j-1];
                            intArray[j-1] = intArray[j];
                            intArray[j] = temp;
                                                                3 | 5 | 4 | 10
                       }}}
                                                               3 | 4 | 5 | 10
```



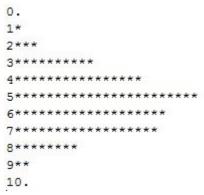
Another Exercise





hist[j] is the count of how many of the M trials got j heads

What is the max number of heads you can get in M trials?



Spring 2016

CSE 373: Data Structures & Algorithms