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Announcements 
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Other Data Structures and Algorithms 

• Quadtrees: used in spatial applications like geography and 
image processing 

• Octrees: used in vision and graphics 
• Image pyramids: used in image processing and computer vision 
• Backtracking search: used in AI and vision 
• Graph matching: used in AI and vision 
• Neural nets and deep learning 
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Quadtrees 

• Finkel and Bentley, 1974 
• Lots of work by Hanan Samet, including a book 
• Raster structure: divides space, not objects 
• Form of block coding: compact storage of a large 2-

dimensional array 
• Vector versions exist too 
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Quadtrees, the idea 

NW NE SW SE 

NW NE 

SW SE 

1, 4, 16, 64, 256 
nodes 
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Quadtrees, the idea 

NW NE SW SE 

NW NE 

SW SE 

Choropleth raster map 
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Quadtrees 

• Grid with 2k times 2k pixels 
• Depth is k +1 
• Internal nodes always have 4 children 
• Internal nodes represent a non-homogeneous region 
• Leaves represent a homogeneous region and store 

the common value (or name) 
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Quadtree complexity theorem 

• A subdivision with boundary length r pixels in a 
grid of 2k times 2k gives a quadtree with O(k ⋅ r) 
nodes. 

• Idea: two adjacent, different pixels “cost” at most 2 
paths in the quadtree. 
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Overlay with quadtrees 

Water Acid rain with 
PH below 4.5 
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Result of overlay 
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Various queries 

• Point location: trivial 
• Windowing: descend into subtree(s) that intersect 

query window  
• Traversal boundary polygon: up and down in the 

quadtree 
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Octrees 

• Like quadtrees, but for 3D applications. 
• Breaks 3D space into octants  
• Useful in graphics for representing 3D objects 

at different resolutions 

Spring 2016 12 CSE373: Data Structures & Algorithms 



13 Spring 2016 CSE373: Data Structures & Algorithms 



14 Spring 2016 CSE373: Data Structures & Algorithms 



15 Spring 2016 CSE373: Data Structures & Algorithms 



16 Spring 2016 CSE373: Data Structures & Algorithms 



17 Spring 2016 CSE373: Data Structures & Algorithms 



Spring 2016 CSE373: Data Structures & Algorithms 18 



Spring 2016 19 

Image Pyramids 

Bottom level is the original image. 

2nd level is derived from the 
original image according to 
some function 

3rd level is derived from the 
2nd level according to the same 
funtion 

And so on. 
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Mean Pyramid 

Bottom level is the original image. 

At 2nd level, each pixel is the mean 
of 4 pixels in the original image. 

At 3rd level, each pixel is the mean 
of 4 pixels in the 2nd level. 

And so on. 

mean 
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Gaussian Pyramid 
At each level, image is smoothed 
and reduced in size. 

Bottom level is the original image. 

At 2nd level, each pixel is the result 
of applying a Gaussian mask to 
the first level and then subsampling 
to reduce the size. 

And so on. 

Apply Gaussian filter 
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Example: Subsampling with Gaussian pre-
filtering 

G 1/4 

G 1/8 

Gaussian 1/2   
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Backtracking Search in AI/Vision 

• Start at the root of a search tree at a “state” 
• Generate children of that state 
• For each child 

– If the child is the goal, done 
– If the child does not satisfy the constraints of the problem, 

ignore it and keep going in this loop 
– Else call the search recursively for this child 

• Return 
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This is called backtracking, because if it goes through all children of 
a node and finds no solution, it returns to the parent and continues  
with the children of that parent.  
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Formal State-Space Model 

Problem = (S, s, A, f, g, c) 

S = state space 
s = initial state 
A = set of actions 
f = state change function     
g = goal test function           
c = cost function                 

x y a 
c(a) 
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3 Coins Problem 
A Very Small State Space 
Problem 

• There are 3 (distinct) coins:  coin1, coin2, coin3.  
 

• The initial state is                      H       H        T 
 

• The legal operations are to turn over exactly one coin. 
– 1 (flip coin1), 2 (flip coin2), 3 (flip coin3) 

 
• There are two goal states:         H       H        H 
                                                       T        T        T 
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State-Space Graph 

HTT 

TTT 

THH 

HHH 

HHT THT 

TTH HTH 

1 
2 

1 

3 

1 

2 

1 

3 

3 

3 

2 

2 

• What are some solutions? 
 



Partial Search Tree 
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HHT 

THT HTT HHH 

HHT 

X 

TTT THH TTT HHT 

X 

HTH 

1 
2 

3 

1 
2 3 1 2 

3 
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The 8-Puzzle Problem 

1  2  3 
8  B  4 
7  6  5 

B  1  2 
3  4  5 
6  7  8 

one 
initial 
state 

goal 
state 

B=blank 

1. What data structure easily represents a state? 
2. How many possible states are there? 
3.  What is the complexity of the search? 
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Search Tree Example:  
Fragment of 8-Puzzle Problem Space  
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Example: Route Planning 
Find the shortest route from 
the starting city to the goal 
city given roads and distances. 

• Input: 
– Set of states 

 
– Operators [and costs] 

 
– Start state 

 
– Goal state (test) 
 

• Output: 

The travelling salesman problem (TSP) 
 asks the following question:  
Given a list of cities and the distances  
between each pair of cities, what is the  
shortest possible route that visits each  
city exactly once and returns to the  
origin city? 



Search in AI 

• Search in Data Structures 
– You’re given an existent tree. 
–  You search it in different orders. 
–  It resides in memory. 

• Search in Artificial Intelligence 
– The tree does not exist. 
– You have to generate it as you go. 
– For realistic problems, it does not fit in memory. 
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Search Strategies (Ch 3)   

• Uninformed Search 
 The search is blind, only the order of search is important. 

• Informed Search 
 The search uses a heuristic function to estimate the 

goodness of each state. 



Depth-First Search by Recursion* 
 

• Search is a recursive procedure that is called with the start node 
and has arg s. 

• It checks first if s is the goal. 
• It also checks if s is illegal or too deep. 
• If neither, it generates the list L of successors of its argument s. 
• It iterates through list L, calling itself recursively for each state in 

L. 
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Depth-First Search by Recursion 

34 

start state (root) 

successor  
list of root 

successor 
list of 
first successor 
of root 
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Missionaries and Cannibals Problem 

Left Bank             Right Bank 

River 
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Missionary and Cannibals Notes 

• Define your state as (M,C,S) 
– M: number of missionaries on left bank 
– C:  number of cannibals on left bank 
– S:   side of the river that the boat is on 

 
• When the boat is moving, we are in between states. When it 

arrives, everyone gets out. 
 

(3,3,L)    (3,1,R) What action did I apply? 



What are all the actions? 
• Left to right 

1. MCR 
2. MMR 
3. ? 
4. ? 
5. ? 
• Right to left 

1. MCL 
2. MML 
3. ? 
4. ? 
5. ? 
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When is a state considered “DEAD”? 

1. There are more cannibals than missionaries 
on the left bank.       (Bunga-Bunga) 
 

2. There are more cannibals than missionaries 
on the right bank.     (Bunga-Bunga) 
 

3. There is an ancestor state of this state that 
is exactly the same as this state. (Why?) 



Same Ancestor State 
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(3,3,L) 

(3,1,R) 

(3,3,L) 
    X 

Stack 
 
(3,3,L) 
 
 
(3,1,R) 



Graph Matching 
Input: 2 digraphs G1 = (V1,E1), G2 = (V2,E2) 
 
Questions to ask: 
 
1. Are G1 and G2 isomorphic? 
 
2. Is G1 isomorphic to a subgraph of G2? 

 
3. How similar is G1 to G2? 

 
4. How similar is G1 to the most similar 
       subgraph of G2? 
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Isomorphism for Digraphs 
 
G1 is isomorphic to G2 if there is a 1-1, onto 
mapping h: V1 → V2 such that   ( vi,vj ) ∈ E1 iff ( h(vi), h(vj) ) ∈ E2. 

1 2 

4 5 
3 

G1                                   G2 
a b 

c 

d e 

Find an isomorphism h: {1,2,3,4,5} → {a,b,c,d,e}. 
Check that the condition holds for every edge. 

Answer: h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d 
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Isomorphism for Digraphs 
 
G1 is isomorphic to G2 if there is a 1-1, onto 
mapping h: V1 → V2 such that   ( vi,vj ) ∈ E1 iff ( h(vi), h(vj) ) ∈ E2 

1 2 

4 5 
3 

G1                                   G2 
a b 

c 

d e 

Answer: h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d 
(1,2) ∈ E1 and (h(1),h(2))=(b,e) ∈ E2. 
(2,1) ∈ E1 and (e,b) ∈ E2. 
(2,5) ∈ E1 and (e,d) ∈ E2. 
(3,1) ∈ E1 and (c,b) ∈ E2. 
(3,2) ∈ E1 and (c,e) ∈ E2. 
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Subgraph Isomorphism for Digraphs 

G1 is isomorphic to a subgraph of G2 if there 
is a 1-1 mapping h: V1 → V2 such that  ( vi,vj ) ∈ E1 ⇒  ( h(vi), h(vj) ) ∈ E2. 

1 

3 

2 a b 

c d 

G1                                        G2 

Isomorphism and subgraph isomorphism 
are defined similarly for undirected graphs. 
 
In this case, when (vi,vj) ∈ E1, either  
(vi,vj) or (vj,vi) can be listed in E2, since 
 they are equivalent and both mean {vi,vj}. 
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Subgraph Isomorphism for Graphs 

G1 is isomorphic to a subgraph of G2 if there 
is a 1-1 mapping h: V1 → V2 such that  {vi,vj } ∈ E1 ⇒  { h(vi), h(vj) } ∈ E2. 

1 

3 

2 a b 

c d 

G1                                        G2 

Because there are no directed edges, there are more possible mappings. 
1 2   3 
c     b   d 
c     d   b   (shown on graph) 
b     c   d 
b     d   c 
d     b   c 
d     c   b 
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Graph Matching Algorithms: 
Subgraph Isomorphism for Digraph 

 
Given model graph M = (VM,EM) 
            data   graph  D = (VD,ED) 
 
Find  1-1 mapping h:VM → VD 
 
satisfying  (vi,vj) ∈ EM  ⇒ ((h(vi),h(vj)) ∈ ED. 
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Method:  Recursive Backtracking Tree Search 
(Order is depth first, leftmost child first.) 

1 2 b 

3 

a c 

d e 

M D 

root 

1,c 1,d 

3,c 3,a 

1,a 1,b 1,e 

2,b 2,c 2,a 2,c 

3,d 3,e 3,d 
X X 

X X X X YES! 

. . . . . . . . . 

. . . 

(1,2) ∈ M, but (a,b) ∈ D 
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Application to Computer Vision 
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Find the house model in the image graph. 



More Examples 
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RIO: Relational Indexing for Object 
Recognition 

• RIO worked with industrial parts that could have 
  - planar surfaces 
  - cylindrical surfaces 
  - threads 
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Object Representation in RIO 

• 3D objects are represented by a 3D mesh and set of  
  2D view classes. 
 
• Each view class is represented by an attributed graph 
  whose nodes are features and whose attributed  
  edges are relationships. 
 
• Graph matching is done through an indexing method. 
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RIO Features 

ellipses                   coaxials                 coaxials-multi 

parallel lines                           junctions                          triples 
close and far                   L            V              Y          Z             U 
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RIO Relationships 

• share one arc 
• share one line 
• share two lines 
• coaxial 
• close at extremal points 
• bounding box encloses / enclosed by 
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Graph Representation 

1 coaxials- 
multi 

3 parallel 
lines 

2 ellipse encloses 

encloses 

encloses 
 

coaxial 

 
 
 
 

This is just a piece of 
the whole graph.  
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Relational Indexing for Recognition 

Preprocessing (off-line) Phase 

for each model view Mi in the database 
 
•   encode each 2-graph of Mi to produce an index 
 

•   store Mi and associated information in the indexed 
    bin of a hash table H 



Matching (on-line) phase 

1. Construct a relational (2-graph) description D for the scene 
 

2. For each 2-graph G of D 
 
 
 
 
 

3. Select the Mis with high votes as possible hypotheses 
 

4. Verify or disprove via alignment, using the 3D meshes  

• encode it, producing an index to access the hash table H 
 

• cast a vote for each Mi in the associated bin 



The Voting Process 
  

hash table 

array of 
accumulators 
to vote for 
models 

two related 
features 
from an 
image 



Verification 

1. The matched features of the hypothesized object are  
     used to determine its pose. Pose is computed from 
     correspondences between 2D and 3D points, lines, 
     and circles. 
  
2. The 3D mesh of the object is used to project all its  
    features onto the image using perspective 

projection 
    and hidden feature removal. 
 
3. A verification procedure checks how well the object 
    features line up with edges on the image. 



Feature Extraction 



Some Test Scenes 



Sample Alignments 
3D to 2D Perspective Projection 
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RIO Verifications 
incorrect 

hypothesis 



Fergus Object Recognition by Parts: 

• Enable Computers to 
Recognize Different 
Categories of Objects 
in Images.  
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Model: Constellation Of Parts 

Fischler & Elschlager, 
1973 
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Motorbikes 

65 Spring 2016 CSE373: Data Structures & Algorithms 



Image classification 

• 𝐾 classes 
• Task: assign correct class label to the whole image 

Digit classification (MNIST) Object recognition (Caltech-101  



Classification vs. Detection 

 Dog 

Dog 
Dog 



Generic categories 

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep …? 
PASCAL Visual Object Categories (VOC) dataset 



Quiz time 



Warm up 

This is an average image of which object class? 



Warm up 

pedestrian 



A little harder 

? 



A little harder 

? 
Hint: airplane, bicycle, bus, car, cat, chair, cow, dog, dining table  



A little harder 

bicycle (PASCAL) 



A little harder, yet 

? 



A little harder, yet 

? 
Hint: white blob on a green background 



A little harder, yet 

sheep (PASCAL) 



Impossible? 

? 



Impossible? 

dog (PASCAL) 



Impossible? 

dog (PASCAL) 
Why does the mean look like this? 

There’s no alignment between the examples! 
How do we combat this? 



PASCAL VOC detection history 
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Part-based models & multiple features 
(MKL) 
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Kitchen-sink approaches 
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Region-based Convolutional Networks 
(R-CNNs) 
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[R-CNN. Girshick et al. CVPR 2014] 
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Convolutional Neural Networks 

• Overview 



Standard Neural Networks 

𝒙 = 𝑥1, … , 𝑥784 𝑇 𝑧𝑗 = 𝑔(𝒘𝑗 
𝑇𝒙) 𝑔 𝑡 =

1
1 + 𝑒−𝑡

 

“Fully connected” 

g(sum of weights w times inputs x) inputs 

hidden layer 

outputs 



From NNs to Convolutional NNs 

• Local connectivity 
• Shared (“tied”) weights 
• Multiple feature maps 
• Pooling 



Convolutional NNs 

• Local connectivity 

• Each green unit is only connected to (3) 
neighboring blue units 

compare 



Convolutional NNs 

• Shared (“tied”) weights 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 
𝑤2 
𝑤3 

𝑤1 
𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 
𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 
𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 
𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 

𝑤1 
𝑤2 
𝑤3 



Convolutional NNs 

• Convolution with 1-D filter: [𝑤3,𝑤2,𝑤1] 
 

• All green units share the same parameters 𝒘 
 

• Each green unit computes the same function,  
but with a different input window 𝑤1 

𝑤2 
𝑤3 



Convolutional NNs 

• Multiple feature maps 

• All orange units compute the same function 
but with a different input windows 
 

• Orange and green units compute  
different functions 

𝑤1 
𝑤2 
𝑤3 

𝑤𝑤1 
𝑤𝑤2 
𝑤𝑤3 

Feature map 1 
(array of green units) 

Feature map 2 
(array of orange units) 



Convolutional NNs 

• Pooling (max, average) 

1 
4 
0 
3 

4 

3 

• Pooling area: 2 units 
 

• Pooling stride: 2 units 
 

• Subsamples feature maps 



Image 

Pooling 

Convolution 

2D input 



Core idea of “deep learning” 

• Input: the “raw” signal (image, waveform, …) 
 

• Features: hierarchy of features is learned from the raw input 
 



Ross’s Own System: Region CNNs 



           Competitive Results 



Top Regions for Six Object Classes 
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