

CSE373: Data Structure & Algorithms Lecture 22: More Sorting

Linda Shapiro Spring 2016

Announcements

- HW 5 due June 1
- Final Exam June 7

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

Merge sort: Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole

Quick sort: Pick a "pivot" element

Divide elements into less-than pivot

and greater-than pivot

Sort the two divisions (recursively on each)

Answer is sorted-less-than then pivot then

sorted-greater-than

Quick sort

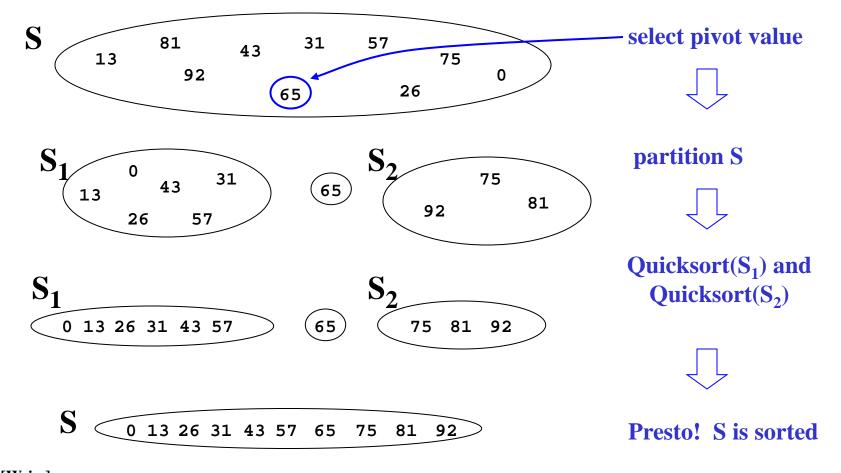
- A divide-and-conquer algorithm
 - Recursively chop into two pieces
 - Instead of doing all the work as we merge together,
 we will do all the work as we recursively split into halves
 - Unlike merge sort, does not need auxiliary space
- $O(n \log n)$ on average \odot , but $O(n^2)$ worst-case \odot
- Faster than merge sort in practice?
 - Often believed so
 - Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

Quicksort Overview

- 1. Pick a pivot element
- 2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot
- 3. Recursively sort A and C
- 4. The answer is, "as simple as A, B, C"

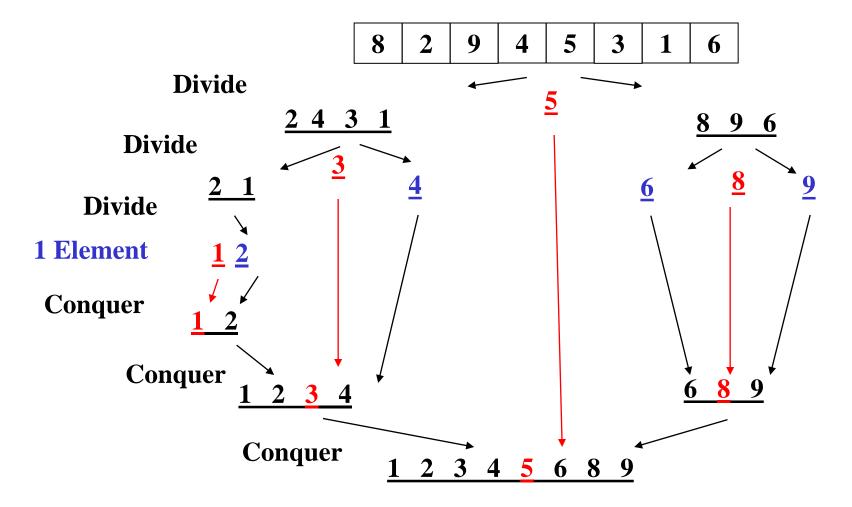
Think in Terms of Sets

Notice: S_1 and S_2 are not of equal sizes.



[Weiss]

Example, Showing Recursion



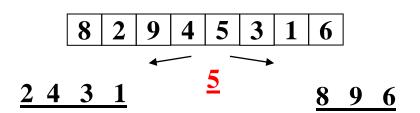
Details

Have not yet explained:

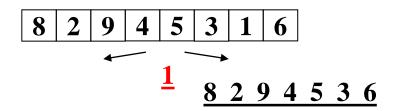
- How to pick the pivot element
 - Any choice is correct: data will end up sorted
 - But as analysis will show, want the two partitions to be about equal in size
- How to implement partitioning
 - In linear time
 - In place

Pivots

- Best pivot?
 - Median
 - Halve each time
 - Why can't we use it?



- Worst pivot?
 - Greatest/least element
 - Problem of size n 1
 - $O(n^2)$



Potential pivot rules

While sorting arr from lo to hi-1 ...

- Pick arr[lo] or arr[hi-1]
 - Fast, but worst-case occurs with mostly sorted input
- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - Still probably the most elegant approach
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - Common heuristic that tends to work well

Partitioning

- Conceptually simple, but hardest part to code up correctly
 - After picking pivot, need to partition in linear time in place
- One approach (there are slightly fancier ones):
 - 1. Swap pivot with arr[lo]
 - 2. Use two pointers i and j, starting at lo+1 and hi-1

```
3. while (i < j)
    if (arr[j] > pivot) j--
    else if (arr[i] < pivot) i++
    else swap arr[i] with arr[j]</pre>
```

4. Swap pivot with arr[i] *

^{*}skip step 4 if pivot ends up being least element

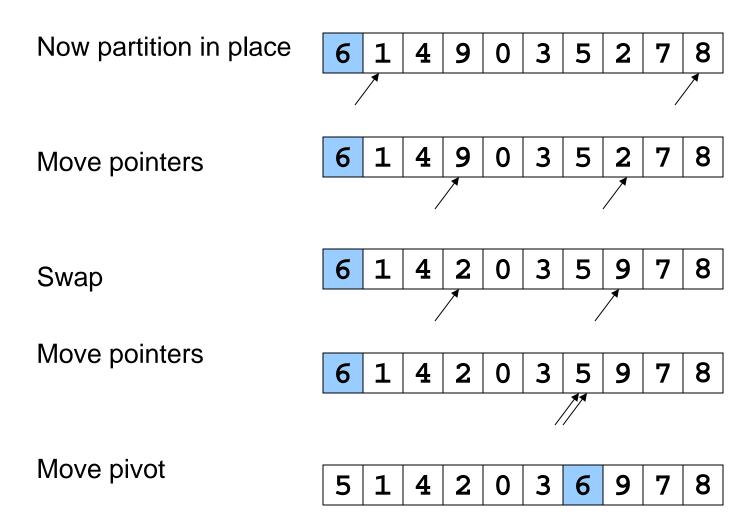
Step one: pick pivot as median of 3

$$-$$
 1o = 0, hi = 10

0	1	2	3	4	5	6	7	8	9
8	1	4	9	0	3	5	2	7	6

• Step two: move pivot to the lo position

Often have more than one swap during partition – this is a short example

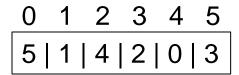


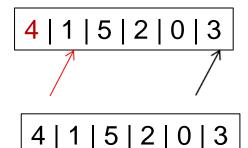
Practice on the left half

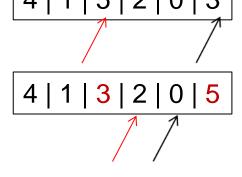
0 1 2 3 4 5 5 1 4 2 0 3

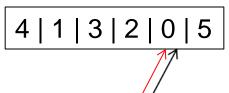
Three values for pivot: 5, 3, 4; median 4

Practice on the left half









Three values for pivot: 5, 3, 4; median 4

Swap the pivot with the lo position.

Set up pointers at beginning and end.

Left pointer can move, since 1 < 4, but right pointer can't, since 3 not > 4.

SWAP and move pointers

Left pointer can move, since 2 < 4

SWAP with the pivot

0 | 1 | 3 | 2 | 4 | 5

Quick sort visualization

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Analysis

Best-case: Pivot is always the median

$$T(0)=T(1)=1$$

 $T(n)=2T(n/2) + n$ -- linear-time partition
Same recurrence as merge sort: $O(n \log n)$

Worst-case: Pivot is always smallest or largest element

$$T(0)=T(1)=1$$

 $T(n) = 1T(n-1) + n$

Basically same recurrence as selection sort: $O(n^2)$

- Average-case (e.g., with random pivot)
 - $O(n \log n)$, not responsible for proof (in text)

Cutoffs

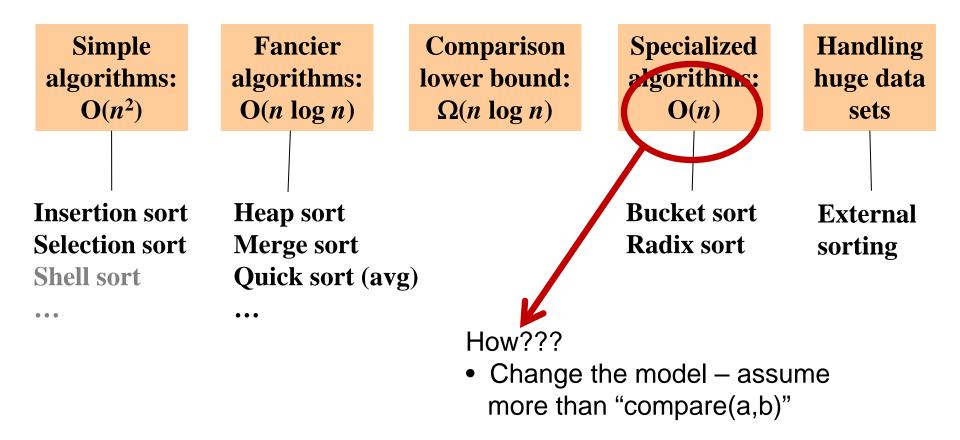
- For small n, all that recursion tends to cost more than doing a quadratic sort
 - Remember asymptotic complexity is for large n
- Common engineering technique: switch algorithm below a cutoff
 - Reasonable rule of thumb: use insertion sort for n < 10
- Notes:
 - Could also use a cutoff for merge sort
 - Cutoffs are also the norm with parallel algorithms
 - Switch to sequential algorithm
 - None of this affects asymptotic complexity

How Fast Can We Sort?

- Heapsort & mergesort have O(n log n) worst-case running time
- Quicksort has O(n log n) average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- Comparison sorting in general is Ω ($n \log n$)
 - An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...



Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array								
1	3							
2	1							
3	2							
4	2							
5	3							

• Example:

output: 1,1,1,2,3,3,4,4,5,5,5

Visualization

http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

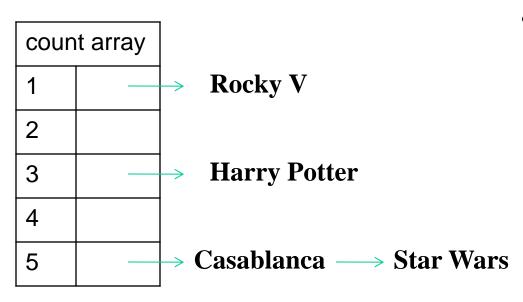
Analyzing Bucket Sort

- Overall: O(n+K)
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
 - We don't spend time doing comparisons of duplicates
- Bad when K is much larger than n
 - Wasted space; wasted time during linear O(K) pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

What does this look like?

- Most real lists aren't just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in O(1) (at beginning, or keep pointer to last element)



 Example: Movie ratings; scale 1-5;1=bad, 5=excellent Input=

5: Casablanca

3: Harry Potter movies

5: Star Wars Original

Trilogy

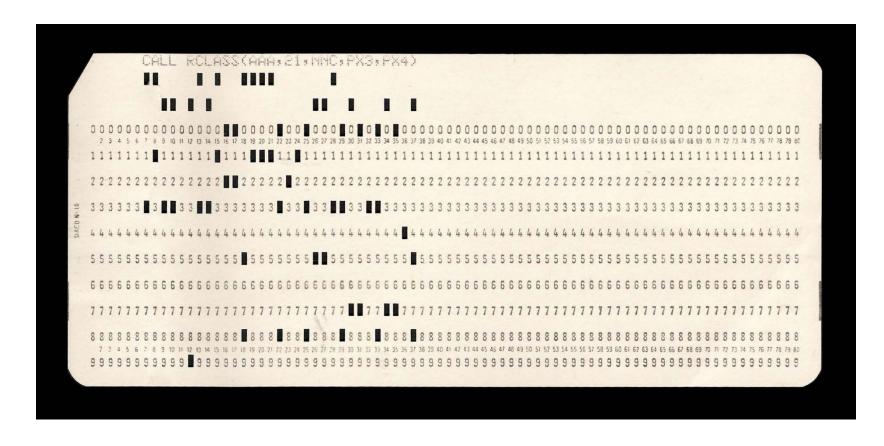
1: Rocky V

- •Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- •Easy to keep 'stable'; Casablanca still before Star Wars

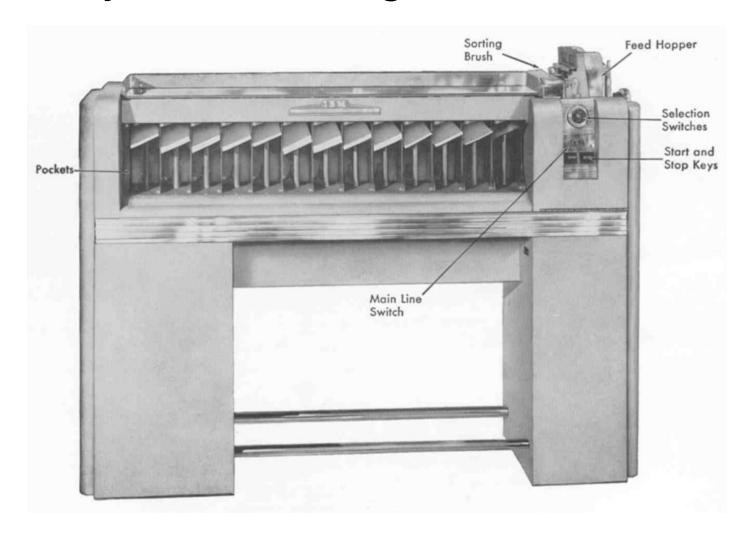
Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit
 - Keeping sort stable
 - Do one pass per digit
 - Invariant: After k passes (digits), the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

History: Punched Card

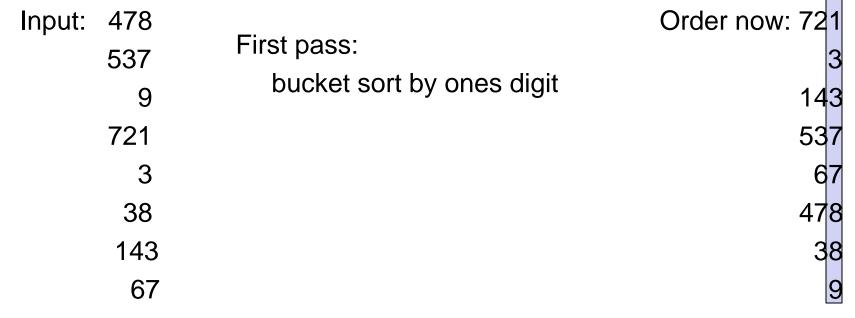


History: IBM Sorting Machine



Radix = 10

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9



0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

Radix = 10

0	1	2	3	4	5	6	7	8	9			
3 9		721	537 38	143		67	478					

Second pass:

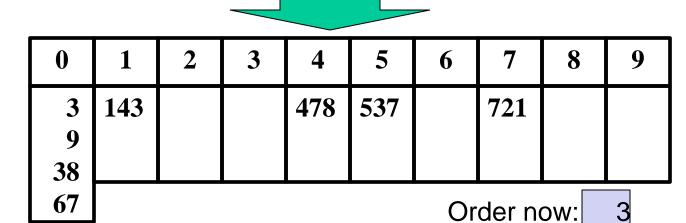
stable bucket sort by tens digit

Fall 2013

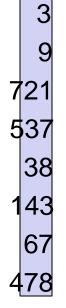
CSE373: Data Structures & Algorithms

0	1	2	3	4	5	6	7	8	9
3 9		721	537 38	143		67	478		

Radix = 10



Order was:



Third pass:

stable bucket sort by 100s digit

478537721

38

67

143

CSE373: Data Structures & Algorithms

Analysis

Input size: n

Number of buckets = Radix: B

Number of passes = "Digits": *P*

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Run-time proportional to: 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Merge sort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Merge sort is the basis of massive sorting
- Merge sort can leverage multiple disks

External Merge Sort

- Sort 900 MB using 100 MB RAM
 - Read 100 MB of data into memory
 - Sort using conventional method (e.g. quicksort)
 - Write sorted 100MB to temp file
 - Repeat until all data in sorted chunks (900/100 = 9 total)
- Read first 10 MB of each sorted chuck, merge into remaining 10MB
 - writing and reading as necessary
 - Single merge pass instead of log n
 - Additional pass helpful if data much larger than memory
- Parallelism and better hardware can improve performance
- Distribution sorts (similar to bucket sort) are also used

Last Slide on Sorting

- Simple O(n²) sorts can be fastest for small n
 - Selection sort, Insertion sort (latter linear for mostly-sorted)
 - Good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- **Ω** (*n* log *n*) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of possible key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!