CSE373: Data Structures \& Algorithms
Lecture 20: Minimum Spanning Trees

Linda Shapiro
Spring 2016

## Announcements

- HW 4 due Wednesday, May 18
- HW 5 will be due June 1. Ben Jones is our expert in Ezgi's absence. benjones@cs


## Minimum Spanning Trees

The minimum-spanning-tree problem

- Given a weighted undirected graph, compute a spanning tree of minimum weight

Given an undirected graph $G=(V, E)$, find a graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that:

- $E^{\prime}$ is a subset of $E$
- |E'| = |V|-1
- $G^{\prime}$ is connected


## $G^{\prime}$ is a minimum spanning tree.

## Two different approaches



Prim's Algorithm
Almost identical to Dijkstra's


Kruskals's Algorithm Completely different!

## Prim's Algorithm Idea

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

## A node-based greedy algorithm Builds MST by greedily adding nodes



## Prim's vs. Dijkstra's

## Recall:

Dijkstra picked the unknown vertex with smallest cost where cost $=$ distance to the source.

Prim's pick the unknown vertex with smallest cost where cost $=$ distance from this vertex to the known set (in other words, the cost of the smallest edge connecting this vertex to the known set)

Otherwise identical $\odot$

## Prim's Algorithm

1. For each node $\mathbf{v}$, set $\mathbf{v}$.cost $=\infty$ and $\mathbf{v}$.known $=$ false
2. Choose any node $\mathbf{v}$
a) Mark vas known
b) For each edge ( $\mathbf{v}, \mathbf{u})$ with weight $\mathbf{w}$, set $\mathbf{u} . \cos \mathbf{t}=\mathbf{w}$ and u.prev=v
3. While there are unknown nodes in the graph
a) Select the unknown node $\mathbf{v}$ with lowest cost
b) Mark $\mathbf{v}$ as known and add ( $\mathbf{v}, \mathbf{v}$. prev) to output
c) For each edge $(\mathbf{v}, \mathbf{u})$ with weight $\mathbf{w}$,

$$
\left.\begin{array}{l}
\text { if(w<u.cost) \{ } \\
\text { u.cost }=w ; \\
\text { u.prev }=v ;
\end{array}\right\}
$$

Select the unknown node v with lowest cost

## Prim's Example



Mark v as known and add (v, v.prev) to output For each edge ( $\mathrm{v}, \mathrm{u}$ ) with weight w ,

$$
\begin{gathered}
\text { if(w }<\text { u.cost) }\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=\mathrm{v} ;\}
\end{gathered}
$$

| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A |  | $? ?$ |  |
| B |  | $? ?$ |  |
| C |  | $? ?$ |  |
| D |  | $? ?$ |  |
| E |  | $? ?$ |  |
| F |  | $? ?$ |  |
| G |  | $? ?$ |  |

## Prim's Example



Select the unknown node v with lowest cost Mark v as known and add (v, v.prev) to output For each edge $(\mathrm{v}, \mathrm{u})$ with weight w ,

$$
\begin{gathered}
\text { if(w }<\text { u.cost) }\{ \\
\text { u.cost = w; } \\
\text { u.prev }=\text { v;\} }
\end{gathered}
$$

| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | $Y$ | 0 |  |
| B |  | 2 | A |
| C |  | 2 | A |
| D |  | 1 | A |
| E |  | $? ?$ |  |
| F |  | $? ?$ |  |
| G |  | $? ?$ |  |

## Prim's Example



Select the unknown node v with lowest cost Mark v as known and add (v, v.prev) to output For each edge $(v, u)$ with weight $w$,

$$
\begin{gathered}
\text { if(w }<u . \operatorname{cost})\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=\mathrm{v} ;\}
\end{gathered}
$$

| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | Y | 0 |  |
| B |  | 2 | A |
| C |  | 1 | D |
| D | $Y$ | 1 | A |
| E |  | 1 | $D$ |
| F |  | 6 | $D$ |
| G |  | 5 | $D$ |

## Prim's Example



Select the unknown node v with lowest cost
Mark v as known and add (v, v.prev) to output For each edge $(v, u)$ with weight $w$,

$$
\begin{gathered}
\text { if(w }<u . \operatorname{cost})\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=\mathrm{v} ;\}
\end{gathered}
$$

| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | $Y$ | 0 |  |
| B |  | 2 | A |
| C | $Y$ | 1 | D |
| D | $Y$ | 1 | A |
| E |  | 1 | D |
| F |  | 2 | C |
| G |  | 5 | $D$ |

## Prim's Example



Select the unknown node v with lowest cost Mark v as known and add (v, v.prev) to output For each edge ( $\mathrm{v}, \mathrm{u}$ ) with weight w,

$$
\begin{gathered}
\text { if(w }<u . \operatorname{cost})\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=v ;\}
\end{gathered}
$$

| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | $Y$ | 0 |  |
| B |  | 1 | $E$ |
| C | $Y$ | 1 | D |
| D | $Y$ | 1 | A |
| E | $Y$ | 1 | D |
| F |  | 2 | C |
| G |  | 3 | E |

## Prim's Example



Select the unknown node $v$ with lowest cost Mark v as known and add (v, v.prev) to output For each edge $(\mathrm{v}, \mathrm{u})$ with weight w ,

$$
\begin{gathered}
\text { if(w }<\text { u.cost) }\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=\mathrm{v} ;\}
\end{gathered}
$$

| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | $Y$ | 0 |  |
| B | $Y$ | 1 | E |
| C | $Y$ | 1 | D |
| D | $Y$ | 1 | A |
| E | $Y$ | 1 | D |
| F |  | 2 | C |
| G |  | 3 | E |

## Prim's Example



Select the unknown node v with lowest cost Mark v as known and add (v, v.prev) to output For each edge ( $\mathrm{v}, \mathrm{u}$ ) with weight w ,

$$
\begin{gathered}
\text { if(w }<\text { u.cost) }\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=\mathrm{v} ;\}
\end{gathered}
$$

| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | $Y$ | 0 |  |
| B | $Y$ | 1 | E |
| C | $Y$ | 1 | D |
| D | $Y$ | 1 | A |
| E | $Y$ | 1 | D |
| F | $Y$ | 2 | C |
| G |  | 3 | E |

## Prim's Example



Select the unknown node $v$ with lowest cost Mark v as known and add (v, v.prev) to output For each edge $(\mathrm{v}, \mathrm{u})$ with weight w ,

$$
\begin{gathered}
\text { if(w }<\text { u.cost) }\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=\mathrm{v} ;\}
\end{gathered}
$$

| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | $Y$ | 0 |  |
| B | $Y$ | 1 | $E$ |
| C | $Y$ | 1 | $D$ |
| $D$ | $Y$ | 1 | $A$ |
| E | $Y$ | 1 | $D$ |
| $F$ | $Y$ | 2 | $C$ |
| $G$ | $Y$ | 3 | $E$ |

## Analysis

- Correctness
- A bit tricky
- Intuitively similar to Dijkstra
- Run-time
- Same as Dijkstra
- $O(|E| \log |\mathrm{V}|)$ using a priority queue
- Costs/priorities are just edge-costs, not path-costs


## Another Example

A cable company wants to connect five villages to their network which currently extends to the town of Avonford. What is the minimum length of cable needed?


Edan

## Prim's Algorithm



Model the situation as a graph and find the MST that connects all the villages (nodes).

## Prim's Algorithm

## Select any vertex



## Prim's Algorithm



Select the shortest
edge that connects an unknown vertex to any known vertex.

AE 4

## Prim's Algorithm



Select the shortest
edge that connects an unknown vertex to any known vertex.

ED 2

## Prim's Algorithm



Select the shortest edge that connects an unknown vertex to any known vertex.

DC 4

## Prim's Algorithm



Select the shortest edge that connects an unknown vertex to any known vertex.

EF 5

## Prim's Algorithm

All vertices have been connected.


The solution is
AB 3
AE 4
ED 2
DC 4 EF 5

Total weight of tree: 18

## Practice

Start with A. Make it Known. HINT: Choose the least cost edge out of it. Add that node to the Known.


## Practice

## A connects to B, C, E Lowest cost is to E



## Practice

Now we consider anything connected to A or E.


Nodes considered are B, C, D. Lowest cost to B.

## Practice

Now we consider anything connected to A, B, or E.


Nodes considered are C, D.
Lowest cost to D.

## Practice

Now we consider anything connected to A, B, D, or E.


Nodes considered are C.
Lowest cost is from $D$ to $C$.

## DONE

## Minimum Spanning Tree Algorithms

- Prim's Algorithm for Minimum Spanning Tree
- Similar idea to Dijkstra's Algorithm but for MSTs.
- Both based on expanding cloud of known vertices (basically using a priority queue instead of a DFS stack)
- Kruskal's Algorithm for Minimum Spanning Tree
- Another, but different, greedy MST algorithm.
- Uses the Union-Find data structure.


## Kruskal's Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

## An edge-based greedy algorithm Builds MST by greedily adding edges

$\mathbf{G}=(\mathbf{V}, \mathbf{E})$


## Kruskal's Algorithm Pseudocode

1. Sort edges by weight (min-heap)
2. Each node in its own set (up-trees)
3. While output size $<|\mathrm{V}|-1$

- Consider next smallest edge ( $\mathbf{u}, \mathbf{v}$ )
- if find( $\mathbf{u}$ ) and find( $\mathbf{v}$ ) indicate $\mathbf{u}$ and $\mathbf{v}$ are in different sets
- output ( $\mathrm{u}, \mathrm{v}$ )
- union(find(u), find(v))

Recall invariant:
$\mathbf{u}$ and $\mathbf{v}$ in same set if and only if connected in output-so-far

## Kruskal's Example



Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: (A, D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: (A, D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: (A, D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: (A, D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: (A,B), (C,F), (A,C)
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: (A,B), (C,F), (A,C)
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Algorithm Analysis

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.

- But now consider the edges in order by weight

So:

- Sort edges: $O(|E| \log |E|)$ (next course topic)
- Iterate through edges using union-find for cycle detection almost $O$ (IE])

Somewhat better:

- Floyd's algorithm to build min-heap with edges $O$ (IEI)
- Iterate through edges using union-find for cycle detection and deleteMin to get next edge $O(|E| \log |E|)$
- Not better worst-case asymptotically, but often stop long before considering all edges.


## Kruskal's Algorithm



## Practice

Order the edges.
(C,D)
(E,B)
(A,E)
(B,D)
(A,B)
(E,D)
(E,C)
(A,C)

## Practice



Order the edges.
(C,D)
(E,B)
(A,E)
(B,D)
(A,B)
(E,D)
(E,C)
(A,C)

## Practice



Order the edges.
$(C, D)$
$(E, B)$
(A,E)
(B,D)
(A,B)
(E,D)
(E,C)
(A,C)

## Practice



Order the edges.
$(C, D)$
$(E, B)$
$(A, E)$
(B,D)
(A,B)
(E,D)
(E,C)
(A,C)

## Practice



Order the edges.

(A,B)
(E,D)
(E,C)
(A,C)

## Practice



Order the edges.

(A,B)
(E,D) (A,C)


## Done with graph algorithms!

## Next lecture...

- Sorting

