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Background on Induction 

• Type of mathematical proof 
• Typically used to establish a given statement for 

all natural numbers (e.g. integers > 0) 
• Proof is a sequence of deductive steps 

1. Show the statement is true for the first number.  
2. Show that if the statement is true for any one 

number, this implies the statement is true for the 
next number.  

3. If so, we can infer that the statement is true for all 
numbers. 
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Think about climbing a ladder 
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1. Show you can get to the first 
rung (base case) 

2. Show you can get between 
rungs (inductive step) 

3. Now you can climb forever.  



Why you should care 

• Induction turns out to be a useful technique 
– AVL trees 
– Heaps 
– Graph algorithms 
– Can also prove things like 3n > n3 for n ≥ 4 

• Exposure to rigorous thinking 
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Example problem 

• Find the sum of the integers from 1 to n 
• 1 + 2 + 3 + 4 + … + (n-1) + n 

 
 
 

• For any n ≥ 1 
• Could use brute force, but would be slow 
• There’s probably a clever shortcut 
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Finding the formula 

• Shortcut will be some formula involving n 
• Compare examples and look for patterns 

– Not something I will ask you to do! 

• Start with n = 10: 
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8  + 9 + 10 = ??? 
– Large enough to be a pain to add up 
– Worthwhile to find shortcut 
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Look for Patterns 

• n = 1: 1 
• n = 2: 1 + 2 
• n = 3: 1 + 2 + 3 
• n = 4: 1 + 2 + 3 + 4 
• n = 5: 1 + 2 + 3 + 4 + 5 
• n = 6: 1 + 2 + 3 + 4 + 5 + 6 

 
• Someone solved this a long time ago. You 

probably learned it once in high school. 
 

Spring 2016 7 

1 
3 
6 
10 
15 
21 



The general form 

 
• We want something for any n ≥ 1 
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Are we done? 

• The pattern seems pretty clear 
– Is there any reason to think it changes? 

• We want something for any n ≥ 1 
• A mathematical approach is skeptical 
• We must prove the formula works in all cases 

– A rigorous proof 
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Proof by Induction 

• Prove the formula works for all cases. 
• Induction proofs have four components:  
1. The thing you want to prove, e.g., sum of integers 

from 1 to n = n(n+1)/2  
2. The base case (usually "let n = 1"),  
3. The assumption step (“assume true for n = k")  
4. The induction step (“now let n = k + 1"). 
 
n and k are just variables! 
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Proof by induction 

• P(n) = sum of integers from 1 to n 
• We need to do 

– Base case 
– Assumption 
– Induction step 
 

• n and k are just variables! 
 

prove for P(1) 
assume for P(k) 
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show for P(k+1) 



Proof by induction 

• P(n) = sum of integers from 1 to n 
• We need to do 

– Base case 
– Assumption 
– Induction step 
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1  2  3  4  5  6… 

prove for P(1) 
assume for P(k) 
 
 
show for P(k+1) 



Proof by induction 

• What we are trying to prove: P(n) = n(n+1)/2 
• Base case 

– P(1) = 1 
– 1(1+1)/2 = 1(2)/2 = 1(1) = 1 
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✓ 



Proof by induction 

• What we are trying to prove:   P(n) = n(n+1)/2 
• Assume true for k:   P(k) = k(k+1)/2 
• Induction step: 

– Now consider P(k+1) 
= 1 + 2 + … + k + (k+1) 
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Proof by induction 

• What we are trying to prove:   P(n) = n(n+1)/2 
• Assume true for k:   P(k) = k(k+1)/2 
• Induction step: 

– Now consider P(k+1) 
= 1 + 2 + … + k + (k+1) 
= k(k+1)/2 + (k+1) 

 
 

 
Spring 2016 15 



Proof by induction 

• What we are trying to prove:   P(n) = n(n+1)/2 
• Assume true for k:   P(k) = k(k+1)/2 
• Induction step: 

– Now consider P(k+1) 
= 1 + 2 + … + k + (k+1) 
= k(k+1)/2 + (k+1) 
= k(k+1)/2 + 2(k+1)/2 
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Proof by induction 

• What we are trying to prove:   P(n) = n(n+1)/2 
• Assume true for k:   P(k) = k(k+1)/2 
• Induction step: 

– Now consider P(k+1) 
= 1 + 2 + … + k + (k+1) 
= k(k+1)/2 + (k+1) 
= k(k+1)/2 + 2(k+1)/2 
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= (k(k+1) + 2(k+1))/2 



Proof by induction 

• What we are trying to prove:   P(n) = n(n+1)/2 
• Assume true for k:   P(k) = k(k+1)/2 
• Induction step: 

– Now consider P(k+1) 
= 1 + 2 + … + k + (k+1) 
= k(k+1)/2 + (k+1) 
= k(k+1)/2 + 2(k+1)/2  
= (k+1)(k+2)/2 
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= (k(k+1) + 2(k+1))/2 



Proof by induction 

• What we are trying to prove:   P(n) = n(n+1)/2 
• Assume true for k:   P(k) = k(k+1)/2 
• Induction step: 

– Now consider P(k+1) 
= 1 + 2 + … + k + (k+1) 
= k(k+1)/2 + (k+1) 
= k(k+1)/2 + 2(k+1)/2  
= (k+1)(k+2)/2 
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= (k(k+1) + 2(k+1))/2 



Proof by induction 

• What we are trying to prove:   P(n) = n(n+1)/2 
• Assume true for k:   P(k) = k(k+1)/2 
• Induction step: 

– Now consider P(k+1) 
= 1 + 2 + … + k + (k+1) 
= k(k+1)/2 + (k+1) 
= k(k+1)/2 + 2(k+1)/2  
= (k+1)(k+2)/2 
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= (k(k+1) + 2(k+1))/2 
= (k+1)((k+1)+1)/2 ✓ 



Proof by induction 

• What we are trying to prove:   P(n) = n(n+1)/2 
• Assume true for k:   P(k) = k(k+1)/2 
• Induction step: 

– Now consider P(k+1) 
= 1 + 2 + … + k + (k+1) 
= k(k+1)/2 + (k+1) 
= k(k+1)/2 + 2(k+1)/2  
= (k+1)(k+2)/2 
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= (k(k+1) + 2(k+1))/2 
= (k+1)((k+1)+1)/2 ✓ 



We’re done! 

• P(n) = sum of integers from 1 to n 
• We have shown 

– Base case 
– Assumption 
– Induction step 
 

Success: we have proved that P(n) is true for 
any integer n ≥ 1  
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proved for P(1) 
assumed for P(k) 
 
 
proved for P(k+1) 



Another one to try 
• What is the sum of the first n powers of 2? 
• 20 + 21 + 22 + ... + 2n-1 

 

• k = 1: 20 = 1 
• k = 2: 20 + 21 = 1 + 2 = 3 

• k = 3: 20 + 21 + 22 = 1 + 2 + 4 = 7 
• k = 4: 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15 

 

• For general n, the sum is 2n - 1 
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How to prove it 

P(n) = “the sum of the first n powers of 2 (starting 
at 0) is 2n-1” 

 
Theorem:  P(n) holds for all n ≥ 1 
Proof:  By induction on n 
• Base case: n=1.  Sum of first 1 power of 2 is 20 , 

which equals 1 = 21 - 1.         
• Inductive case: 

– Assume the sum of the first k powers of 2 is 2k-1 
– Show the sum of the first (k+1) powers of 2 is 2k+1-1 
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How to prove it 

• The sum of the first k+1 powers of 2 is 
     20 + 21 + 22 + ... + 2(k-1) + 2k 

 
 
 

 

 
                   = 2(2k) -1 = 2k+1 - 1 
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sum of the first k powers of 2 
 
     by inductive hypothesis 
 
               =   2k - 1 + 2k 



Problem for you to work: 
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Prove: For n ≥ 1, 1×2 + 2×3 + 3×4 + ... + (n)(n+1) = (n)(n+1)(n+2)/3 
 
Basis: n = 1 
 
Assume true for k:  
 
Induction step: 
 



End of Inductive Proofs! 
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Conclusion 

• Mathematical induction is a technique for proving 
something is true for all integers starting from a 
small one, usually 0 or 1. 

• A proof consists of three parts: 
 1. Prove it for the base case. 
 2. Assume it for some integer k. 
 3. With that assumption, show it holds for k+1 
• It can be used for complexity and correctness 

analyses.  
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