CSE373: Data Structures \& Algorithms Lecture 19: Spanning Trees

Linda Shapiro
Winter 2016

Announcements

- HW 4 due Wed, May 18

Done with Dijkstra

- You will implement Dijkstra's algorithm in homework 5.
- Onward..... Spanning trees!

Spanning Trees

- A simple problem: Given a connected undirected graph G=(V,E), find a minimal subset of edges such that \mathbf{G} is still connected
- A graph $\mathbf{G 2}$ =(V,E2) such that $\mathbf{G} \mathbf{2}$ is connected and removing any edge from E2 makes $\mathbf{G} 2$ disconnected

Observations $|\mathrm{V}|=4$

$$
|V|-1=3
$$

1. Any solution to this problem is a tree

- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected

- So |E| $\geq|\mathbf{V}|-1$

4. A tree with $|\mathbf{V}|$ nodes has $|\mathbf{V}|-\mathbf{1}$ edges

- So every solution to the spanning tree problem has |V|-1 edges

Spanning Trees

- Can we find another spanning tree in the bigger one?
- Pick a start node and think like a tree.

Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip

Two Approaches

Different algorithmic approaches to the (unweighted) spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
2. Iterate through edges; add to output any edge that does not create a cycle

Spanning tree via DFS

```
spanning_tree(Graph G) {
    for each node i
                i.marked = false
    for some node i: f(i)
}
f(Node i) {
    i.marked = true
    for each j adjacent to i:
                if(!j.marked) {
                add(i,j) to output
                f(j) // DFS
                }
}
```

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: $O($ IE] $)$

Example

Stack
f(1)

2

Output:

Example

Stack
f(1)
f(2)

2

Output: $(1,2)$

Example

Output: (1,2), (2,7)

Example

Stack
f(1)
f(2)
f(7)
f(5)

Output: (1,2), (2,7), (7,5)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)

Output: (1,2), (2,7), (7,5), (5,4)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)

Output: (1,2), (2,7), (7,5), (5,4),(4,3)

Example

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Example

Stack

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
- Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:

- Depends on how quickly you can detect cycles
- Reconsider after the example

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output:

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2)$

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4)$

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4),(5,6)$,

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4),(5,6),(5,7)$

Example

Edges in some arbitrary order:

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$ 2

Can stop once we have |V|-1 edges
Output: $(1,2),(3,4),(5,6),(5,7),(1,5),(2,3)$

Cycle Detection

- To decide if an edge could form a cycle is $O(|\mathrm{~V}|)$ because we may need to traverse all edges already in the output
- So overall algorithm would be $O(|\mathrm{~V}||\mathrm{E}|)$
- But there is a faster way we know
- Use union-find!
- Initially, each item is in its own 1-element set
- Union sets when we add an edge that connects them
- Stop when we have one set

Using Disjoint-Sets

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: u and v are connected in output-so-far
> iff
> \mathbf{u} and \mathbf{v} in the same set

- Initially, each node is in its own set
- When processing edge (\mathbf{u}, \mathbf{v}):
- If find(u) equals find(v), then do not add the edge
- Else add the edge and union(find(u), find(v))
- $O($ |E| $)$ operations that are almost $O(1)$ amortized

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: \{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\} 2

Output:

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: $\{1,2\}\{3\}\{4\}\{5\}\{6\}\{7\}$

Output: $(1,2)$

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: $\{1,2\}\{3,4\}\{5\}\{6\}\{7\}$

Output: $(1,2)(3,4)$

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: $\{1,2\}$ \{3,4\} \{5,6\} \{7\}

Output: $(1,2)(3,4)(5,6)$

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: $\{1,2\}\{3,4\}\{5,6,7\}$

Output: $(1,2)(3,4)(5,6)(5,7)$

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: $\{3,4\}$ \{5,6,7,1,2\}

Output: $(1,2)(3,4)(5,6)(5,7)(1,5)$

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: $\{3,4\}$ \{5,6,7,1,2\}

Output: $(1,2)(3,4)(5,6)(5,7)(1,5)$

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: $\{3,4\}\{5,6,7,1,2\}$

Output: $(1,2)(3,4)(5,6)(5,7)(1,5)$

Example

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) Sets: $\{3,4,5,6,7,1,2\}$

Output: $(1,2)(3,4)(5,6)(5,7)(1,5)(2,3)$

Practice Problem

Edges in arbitrary order:
$(2,5)(2,3)(1,2)(1,4)(2,4)(3,6)(3,5)(1,5)(2,6)(4,5)(5,6)$

Practice Problem

Edges in arbitrary order:
$(2,5)(2,3)(1,2)(1,4)(2,4)(3,6)(3,5)(1,5)(2,6)(4,5)(5,6)$

$(2,5)$
$(2,3)$
$(1,2)$
$(1,4)$
$(2,4)$
$(3,6)$
$\{2,5\}$
$\{2,3,5\}$
\{1,2,3,5)
\{1,2,3,4,5\}
\{1,2,3,4,5\}
$\{1,2,3,4,5,6\}$

Practice Problem

Edges in arbitrary order:
$(2,5)(2,3)(1,2)(1,4)(2,4)(3,6)(3,5)(1,5)(2,6)(4,5)(5,6)$

$(2,5)$
$(2,3)$
$(1,2)$
$(1,4)$
$(2,4)$
$(3,6)$

Summary So Far

The spanning-tree problem

- Add nodes to partial tree approach is $O(|E|)$
- Add acyclic edges approach is almost O (IEI)
- Using union-find "as a black box"

But really want to solve the minimum-spanning-tree problem

- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be $O(|E| \log |\mathrm{V}|)$

Minimum Spanning Tree Algorithms

Algorithm \#1
Shortest-path is to Dijkstra's Algorithm
as
Minimum Spanning Tree is to Prim's Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm \#2
Kruskal's Algorithm for Minimum Spanning Tree is

Exactly our $2^{\text {nd }}$ approach to spanning tree but process edges in cost order

