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Announcements 

• HW 4 due Wed, May 18 
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Done with Dijkstra   

• You will implement Dijkstra’s algorithm in homework 5. 
• Onward….. Spanning trees! 
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Spanning Trees 

• A simple problem: Given a connected  undirected graph G=(V,E), 
find a minimal subset of edges such that G is still connected 
– A graph G2=(V,E2) such that G2 is connected and removing 

any edge from E2 makes G2 disconnected 
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Observations 

1. Any solution to this problem is a tree 
– Recall a tree does not need a root; just means acyclic 
– For any cycle, could remove an edge and still be connected 

 
2. Solution not unique unless original graph was already a tree 

 
3. Problem ill-defined if original graph not connected 

– So |E| ≥ |V|-1 
 

4. A tree with |V| nodes has |V|-1 edges 
– So every solution to the spanning tree problem has |V|-1 

edges 
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Spanning Trees 

• Can we find another spanning tree in the bigger one? 
• Pick a start node and think like a tree. 

Spring 2016 6 CSE373: Data Structures & Algorithms 

1 

2 
5 

7 

4 

3 

6 
1 

2 
5 

7 

4 

3 

6 



Motivation 

A spanning tree connects all the nodes with as few edges as possible 
 

• Example: A “phone tree” so everybody gets the message and no 
unnecessary calls get made 

 

 
 
 
 
 
In most compelling uses, we have a weighted  undirected graph and 

we want a tree of least total cost  
• Example: Electrical wiring for a house or clock wires on a chip 
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Two Approaches 

Different algorithmic approaches to the (unweighted) spanning-tree 
problem: 

 
1. Do a graph traversal (e.g., depth-first search, but any traversal 

will do), keeping track of edges that form a tree 
 

2. Iterate through edges; add to output any edge that does not 
create a cycle 
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Spanning tree via DFS 
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spanning_tree(Graph G) { 
  for each node i 
  i.marked = false 
  for some node i: f(i) 
} 
f(Node i) { 
  i.marked = true 
  for each j adjacent to i: 
   if(!j.marked) { 
      add(i,j) to output 
      f(j) // DFS 
    } 
} 
   Correctness: DFS reaches each node.  We add one edge to connect it 

 to the already visited nodes.  Order affects result, not correctness. 
 

Time: O(|E|) 



Example  

Stack 
f(1) 
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Example 

Stack 
f(1) 
f(2) 
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Example 

Stack 
f(1) 
f(2) 
f(7) 
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Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
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Output:  (1,2), (2,7), (7,5) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4) 
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Output:  (1,2), (2,7), (7,5), (5,4) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4),(4,3) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4)  f(6) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4)  f(6) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



Second Approach 

Iterate through edges; output any edge that does not create a cycle 
 
Correctness (hand-wavy): 

– Goal is to build an acyclic connected graph 
– When we add an edge, it adds a vertex to the tree  

• Else it would have created a cycle 
– The graph is connected, so we reach all vertices 

 
Efficiency: 

– Depends on how quickly you can detect cycles 
– Reconsider after the example 
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Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4) 



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6),  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)  

Can stop once we 
have |V|-1 edges 



Cycle Detection 

• To decide if an edge could form a cycle is O(|V|) because we 
may need to traverse all edges already in the output 
 

• So overall algorithm would be O(|V||E|) 
 

• But there is a faster way we know 
 
• Use union-find! 

– Initially, each item is in its own 1-element set 
– Union sets when we add an edge that connects them 
– Stop when we have one set 
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Using Disjoint-Sets 

Can use a disjoint-set implementation in our spanning-tree 
algorithm to detect cycles: 

 

Invariant:  u and v are connected in output-so-far  
     iff  
        u and v in the same set 
 
• Initially, each node is in its own set 
• When processing edge (u,v): 

– If  find(u) equals find(v), then do not add the edge 
– Else add the edge and union(find(u),find(v)) 
– O(|E|) operations that are almost O(1) amortized 
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Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1}  {2}  {3}  {4}  {5}  {6}  {7} 
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Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1,2}  {3}  {4}  {5}  {6}  {7} 
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Output: (1,2)  



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1,2}  {3,4}  {5}  {6}  {7} 
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Output: (1,2) (3,4)  



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1,2}  {3,4}  {5,6}  {7} 
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Output: (1,2) (3,4) (5,6)  



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1,2}  {3,4}  {5,6,7} 
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Output: (1,2) (3,4) (5,6) (5,7) 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {3,4}  {5,6,7,1,2} 
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Output: (1,2) (3,4) (5,6) (5,7) (1,5) 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {3,4}  {5,6,7,1,2} 
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Output: (1,2) (3,4) (5,6) (5,7) (1,5) 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {3,4}  {5,6,7,1,2} 
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Output: (1,2) (3,4) (5,6) (5,7) (1,5) 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {3,4, 5,6,7,1,2} 

Spring 2016 38 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) (3,4) (5,6) (5,7) (1,5) (2,3) 



Practice Problem 
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1 2 3 

4 5 6 

Edges in arbitrary order: 
(2,5) (2,3) (1,2) (1,4) (2,4) (3,6) (3,5) (1,5) (2,6) (4,5) (5,6) 



Practice Problem 
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1 2 3 

4 5 6 

Edges in arbitrary order: 
(2,5) (2,3) (1,2) (1,4) (2,4) (3,6) (3,5) (1,5) (2,6) (4,5) (5,6) 

(2,5) 
(2,3) 
(1,2) 
(1,4) 
(2,4) 
(3,6) 

{2,5} 
{2,3,5} 
{1,2,3,5) 
{1,2,3,4,5} 
{1,2,3,4,5} 
{1,2,3,4,5,6} 



Practice Problem 
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1 2 3 

4 5 6 

Edges in arbitrary order: 
(2,5) (2,3) (1,2) (1,4) (2,4) (3,6) (3,5) (1,5) (2,6) (4,5) (5,6) 

(2,5) 
(2,3) 
(1,2) 
(1,4) 
(2,4) 
(3,6) 



Summary So Far 

The spanning-tree problem 
– Add nodes to partial tree approach is O(|E|) 
– Add acyclic edges approach is almost O(|E|) 

• Using union-find “as a black box” 
 

But really want to solve the minimum-spanning-tree problem 
– Given a weighted undirected graph, give a spanning tree of 

minimum weight 
– Same two approaches will work with minor modifications 
– Both will be O(|E| log |V|) 
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Minimum Spanning Tree Algorithms 

Algorithm #1 
Shortest-path is to Dijkstra’s Algorithm 

as 
Minimum Spanning Tree is to Prim’s Algorithm 

(Both based on expanding cloud of known vertices, basically using 
a priority queue instead of a DFS stack) 

 
Algorithm #2 

Kruskal’s Algorithm for Minimum Spanning Tree 
is 

Exactly our 2nd approach to spanning tree  
but process edges in cost order 
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