
CSE373: Data Structures & Algorithms 
 

Lecture 19: Spanning Trees 

Linda Shapiro 
Winter 2016 



Announcements 

• HW 4 due Wed, May 18 

Spring 2016 2 CSE373: Data Structures & Algorithms 



Done with Dijkstra   

• You will implement Dijkstra’s algorithm in homework 5. 
• Onward….. Spanning trees! 

Spring 2016 3 CSE373: Data Structures & Algorithms 



Spanning Trees 

• A simple problem: Given a connected  undirected graph G=(V,E), 
find a minimal subset of edges such that G is still connected 
– A graph G2=(V,E2) such that G2 is connected and removing 

any edge from E2 makes G2 disconnected 

Spring 2016 4 CSE373: Data Structures & Algorithms 



Observations 

1. Any solution to this problem is a tree 
– Recall a tree does not need a root; just means acyclic 
– For any cycle, could remove an edge and still be connected 

 
2. Solution not unique unless original graph was already a tree 

 
3. Problem ill-defined if original graph not connected 

– So |E| ≥ |V|-1 
 

4. A tree with |V| nodes has |V|-1 edges 
– So every solution to the spanning tree problem has |V|-1 

edges 

Spring 2016 5 CSE373: Data Structures & Algorithms 

a 

b 

c 

d 

|V|=4 
|V|-1=3 



Spanning Trees 

• Can we find another spanning tree in the bigger one? 
• Pick a start node and think like a tree. 

Spring 2016 6 CSE373: Data Structures & Algorithms 

1 

2 
5 

7 

4 

3 

6 
1 

2 
5 

7 

4 

3 

6 



Motivation 

A spanning tree connects all the nodes with as few edges as possible 
 

• Example: A “phone tree” so everybody gets the message and no 
unnecessary calls get made 

 

 
 
 
 
 
In most compelling uses, we have a weighted  undirected graph and 

we want a tree of least total cost  
• Example: Electrical wiring for a house or clock wires on a chip 
 

Spring 2016 7 CSE373: Data Structures & Algorithms 

John 

Parihk Ezgi 

Shu         Deepali 



Two Approaches 

Different algorithmic approaches to the (unweighted) spanning-tree 
problem: 

 
1. Do a graph traversal (e.g., depth-first search, but any traversal 

will do), keeping track of edges that form a tree 
 

2. Iterate through edges; add to output any edge that does not 
create a cycle 

Spring 2016 8 CSE373: Data Structures & Algorithms 



Spanning tree via DFS 

Spring 2016 9 CSE373: Data Structures & Algorithms 

spanning_tree(Graph G) { 
  for each node i 
  i.marked = false 
  for some node i: f(i) 
} 
f(Node i) { 
  i.marked = true 
  for each j adjacent to i: 
   if(!j.marked) { 
      add(i,j) to output 
      f(j) // DFS 
    } 
} 
   Correctness: DFS reaches each node.  We add one edge to connect it 

 to the already visited nodes.  Order affects result, not correctness. 
 

Time: O(|E|) 



Example  

Stack 
f(1) 

Spring 2016 10 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: 



Example 

Stack 
f(1) 
f(2) 

Spring 2016 11 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2) 



Example 

Stack 
f(1) 
f(2) 
f(7) 

Spring 2016 12 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 

Spring 2016 13 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4) 

Spring 2016 14 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4) 
f(3) 

Spring 2016 15 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4),(4,3) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4)  f(6) 
f(3) 

Spring 2016 16 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4)  f(6) 
f(3) 

Spring 2016 17 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



Second Approach 

Iterate through edges; output any edge that does not create a cycle 
 
Correctness (hand-wavy): 

– Goal is to build an acyclic connected graph 
– When we add an edge, it adds a vertex to the tree  

• Else it would have created a cycle 
– The graph is connected, so we reach all vertices 

 
Efficiency: 

– Depends on how quickly you can detect cycles 
– Reconsider after the example 

 

Spring 2016 18 CSE373: Data Structures & Algorithms 



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 19 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: 



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 20 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) 



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 21 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4) 



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 22 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6),  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 23 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 24 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 25 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 26 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2016 27 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)  

Can stop once we 
have |V|-1 edges 



Cycle Detection 

• To decide if an edge could form a cycle is O(|V|) because we 
may need to traverse all edges already in the output 
 

• So overall algorithm would be O(|V||E|) 
 

• But there is a faster way we know 
 
• Use union-find! 

– Initially, each item is in its own 1-element set 
– Union sets when we add an edge that connects them 
– Stop when we have one set 

 
 

Spring 2016 28 CSE373: Data Structures & Algorithms 



Using Disjoint-Sets 

Can use a disjoint-set implementation in our spanning-tree 
algorithm to detect cycles: 

 

Invariant:  u and v are connected in output-so-far  
     iff  
        u and v in the same set 
 
• Initially, each node is in its own set 
• When processing edge (u,v): 

– If  find(u) equals find(v), then do not add the edge 
– Else add the edge and union(find(u),find(v)) 
– O(|E|) operations that are almost O(1) amortized 

Spring 2016 29 CSE373: Data Structures & Algorithms 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1}  {2}  {3}  {4}  {5}  {6}  {7} 

Spring 2016 30 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1,2}  {3}  {4}  {5}  {6}  {7} 

Spring 2016 31 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2)  



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1,2}  {3,4}  {5}  {6}  {7} 

Spring 2016 32 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) (3,4)  



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1,2}  {3,4}  {5,6}  {7} 

Spring 2016 33 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) (3,4) (5,6)  



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {1,2}  {3,4}  {5,6,7} 

Spring 2016 34 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) (3,4) (5,6) (5,7) 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {3,4}  {5,6,7,1,2} 

Spring 2016 35 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) (3,4) (5,6) (5,7) (1,5) 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {3,4}  {5,6,7,1,2} 

Spring 2016 36 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) (3,4) (5,6) (5,7) (1,5) 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {3,4}  {5,6,7,1,2} 

Spring 2016 37 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) (3,4) (5,6) (5,7) (1,5) 



Example 

Edges (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
Sets: {3,4, 5,6,7,1,2} 

Spring 2016 38 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: (1,2) (3,4) (5,6) (5,7) (1,5) (2,3) 



Practice Problem 

Spring 2016 CSE373: Data Structures & Algorithms 39 

1 2 3 

4 5 6 

Edges in arbitrary order: 
(2,5) (2,3) (1,2) (1,4) (2,4) (3,6) (3,5) (1,5) (2,6) (4,5) (5,6) 



Practice Problem 

Spring 2016 CSE373: Data Structures & Algorithms 40 

1 2 3 

4 5 6 

Edges in arbitrary order: 
(2,5) (2,3) (1,2) (1,4) (2,4) (3,6) (3,5) (1,5) (2,6) (4,5) (5,6) 

(2,5) 
(2,3) 
(1,2) 
(1,4) 
(2,4) 
(3,6) 

{2,5} 
{2,3,5} 
{1,2,3,5) 
{1,2,3,4,5} 
{1,2,3,4,5} 
{1,2,3,4,5,6} 



Practice Problem 

Spring 2016 CSE373: Data Structures & Algorithms 41 

1 2 3 

4 5 6 

Edges in arbitrary order: 
(2,5) (2,3) (1,2) (1,4) (2,4) (3,6) (3,5) (1,5) (2,6) (4,5) (5,6) 

(2,5) 
(2,3) 
(1,2) 
(1,4) 
(2,4) 
(3,6) 



Summary So Far 

The spanning-tree problem 
– Add nodes to partial tree approach is O(|E|) 
– Add acyclic edges approach is almost O(|E|) 

• Using union-find “as a black box” 
 

But really want to solve the minimum-spanning-tree problem 
– Given a weighted undirected graph, give a spanning tree of 

minimum weight 
– Same two approaches will work with minor modifications 
– Both will be O(|E| log |V|) 
 

Spring 2016 42 CSE373: Data Structures & Algorithms 



Minimum Spanning Tree Algorithms 

Algorithm #1 
Shortest-path is to Dijkstra’s Algorithm 

as 
Minimum Spanning Tree is to Prim’s Algorithm 

(Both based on expanding cloud of known vertices, basically using 
a priority queue instead of a DFS stack) 

 
Algorithm #2 

Kruskal’s Algorithm for Minimum Spanning Tree 
is 

Exactly our 2nd approach to spanning tree  
but process edges in cost order 

 
 
 
 

Spring 2016 43 CSE373: Data Structures & Algorithms 


	CSE373: Data Structures & Algorithms��Lecture 19: Spanning Trees
	Announcements
	Done with Dijkstra  
	Spanning Trees
	Observations
	Spanning Trees
	Motivation
	Two Approaches
	Spanning tree via DFS
	Example 
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Second Approach
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Cycle Detection
	Using Disjoint-Sets
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Practice Problem
	Practice Problem
	Practice Problem
	Summary So Far
	Minimum Spanning Tree Algorithms

