

CSE373: Data Structures & Algorithms Lecture 18: Shortest Paths

Linda Shapiro Spring 2016

Announcements

Shake 'n Bake due May 18

Graph Traversals

For an arbitrary graph and a starting node **v**, find all nodes *reachable* from **v** (i.e., there exists a path from **v**)

Basic idea:

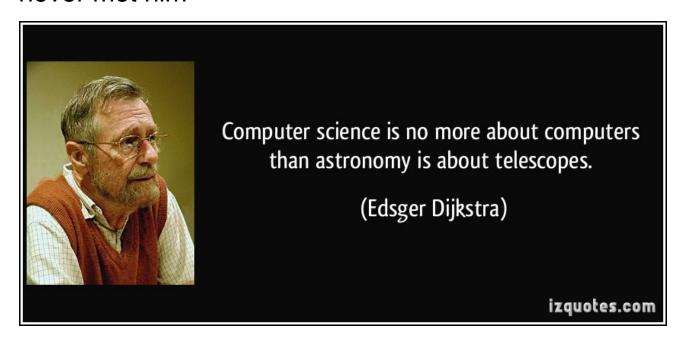
- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Important Graph traversal algorithms:

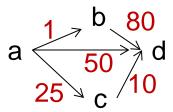
- "Depth-first search" "DFS": recursively explore one part before going back to the other parts not yet explored
- "Breadth-first search" "BFS": explore areas closer to the start node first

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science;
 this is just one of his many contributions
 - Many people have a favorite Dijkstra story, even if they never met him

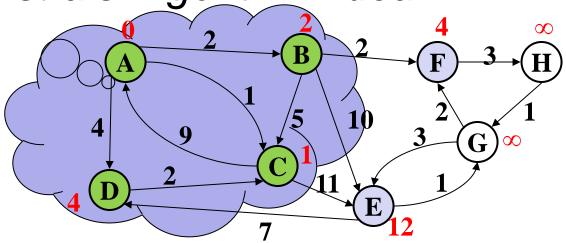


Dijkstra's Algorithm



- Goal: Find the shortest path from a given start node to all other nodes in terms of the weights on the edges.
- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"
 - A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
 - A series of steps
 - At each one the locally optimal choice is made

Dijkstra's Algorithm: Idea



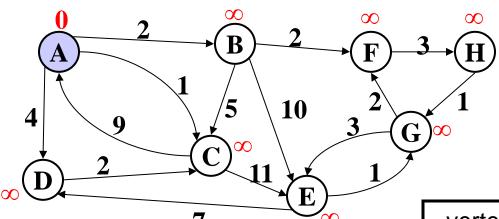
- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from v
- That's it!

The Algorithm

- 1. For each node v, set $v \cdot cost = \infty$ and $v \cdot known = false$
- 2. Set source.cost = 0 // start node
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node v with lowest cost
 - b) Mark v as known
 - c) For each edge (v,u) with weight w,

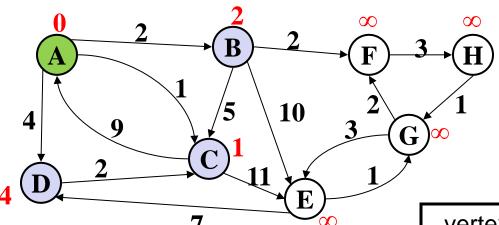
```
V \longrightarrow U
```

```
c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}</pre>
```



Order Added to Known Set:

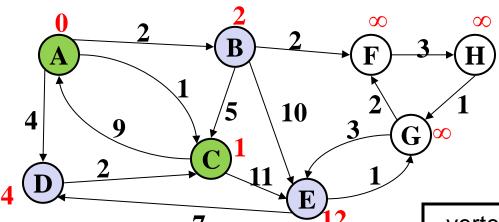
vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
Е		??	
F		??	
G		??	
Н		??	



Order Added to Known Set:

Α

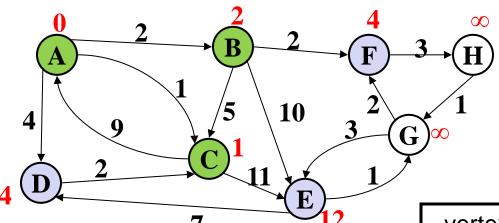
vertex	known?	cost	path
А	Y	0	
В		≤ 2	А
С		≤ 1	Α
D		≤ 4	Α
Е		??	
F		??	
G		??	
Н		??	



Order Added to Known Set:

A, C

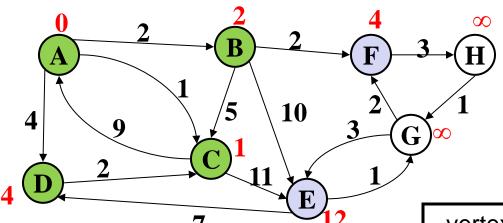
vertex	known?	cost	path
А	Υ	0	
В		≤ 2	А
С	Υ	1	А
D		≤ 4	А
Е		≤ 12	С
F		??	
G		??	
Н		??	



Order Added to Known Set:

A, C, B

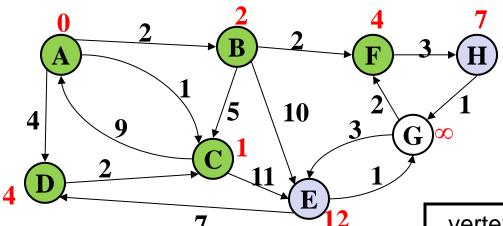
vertex	known?	cost	path
А	Υ	0	
В	Υ	2	А
С	Υ	1	А
D		≤ 4	А
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	



Order Added to Known Set:

A, C, B, D

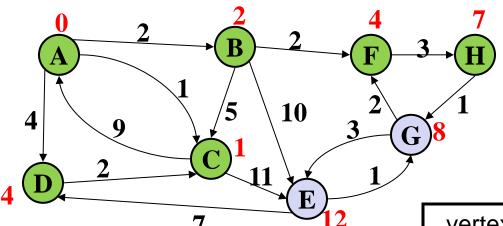
vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	А
С	Υ	1	Α
D	Υ	4	А
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	



Order Added to Known Set:

A, C, B, D, F

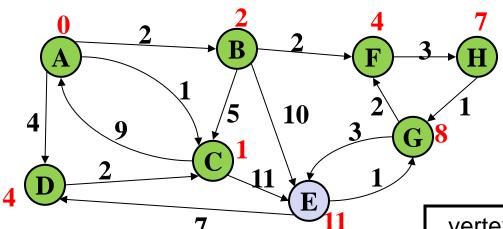
vertex	known?	cost	path
А	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
Е		≤ 12	С
F	Υ	4	В
G		??	
Н		≤ 7	F



Order Added to Known Set:

A, C, B, D, F, H

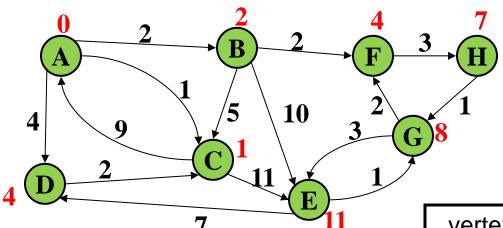
vertex	known?	cost	path
А	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
Е		≤ 12	С
F	Υ	4	В
G		≤ 8	Н
Н	Y	7	F



Order Added to Known Set:

A, C, B, D, F, H, G

vertex	known?	cost	path
А	Υ	0	
В	Υ	2	А
С	Υ	1	Α
D	Υ	4	А
Е		≤ 11	G
F	Υ	4	В
G	Υ	8	Н
Н	Y	7	F



Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
Е	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

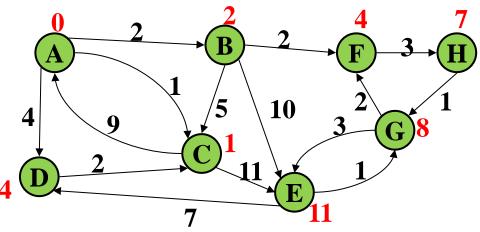
Features

- When a vertex is marked known,
 the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

Interpreting the Results

Now that we're done, how do we get the path from, say, A to E?



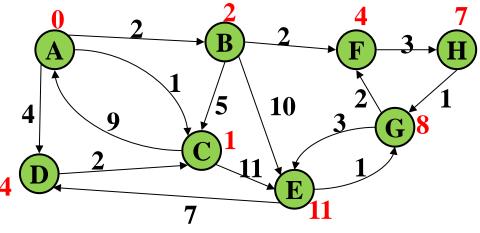
Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
Е	Y	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Y	7	F

Stopping Short

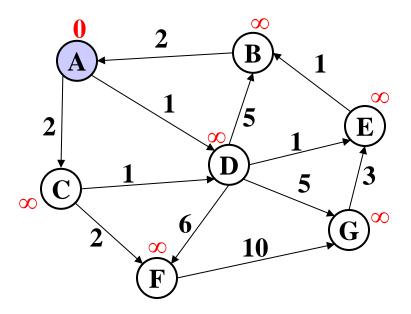
- How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to E?



Order Added to Known Set:

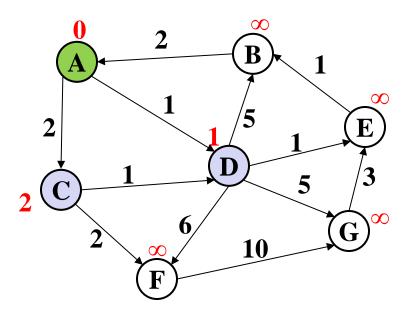
A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Y	4	Α
Е	Υ	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F



Order Added to Known Set:

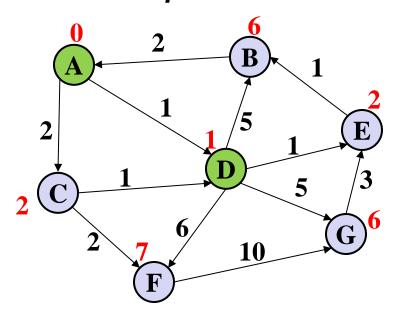
vertex	known?	cost	path
А		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	



Order Added to Known Set:

Α

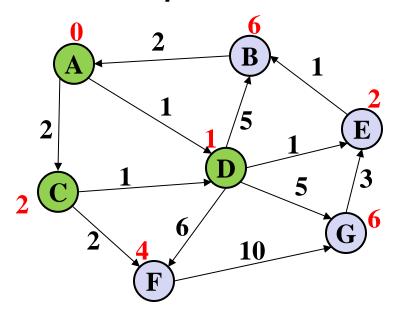
vertex	known?	cost	path
А	Υ	0	
В		??	
С		≤ 2	А
D		≤ 1	Α
Е		??	
F		??	
G		??	



Order Added to Known Set:

A, D

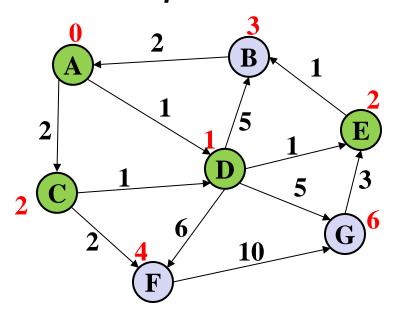
vertex	known?	cost	path
А	Υ	0	
В		≤ 6	D
С		≤ 2	А
D	Υ	1	А
Е		≤ 2	D
F		≤ 7	D
G		≤ 6	D



Order Added to Known Set:

A, D, C

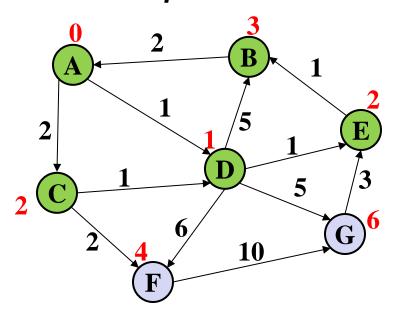
vertex	known?	cost	path
А	Υ	0	
В		≤ 6	D
С	Υ	2	Α
D	Υ	1	Α
Е		≤ 2	D
F		≤ 4	С
G		≤ 6	D



Order Added to Known Set:

A, D, C, E

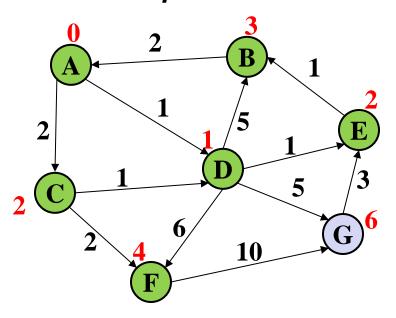
vertex	known?	cost	path
А	Υ	0	
В		≤ 3	Е
С	Υ	2	А
D	Υ	1	Α
Е	Υ	2	D
F		≤ 4	С
G		≤ 6	D



Order Added to Known Set:

A, D, C, E, B

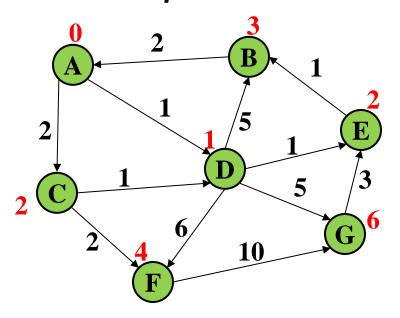
vertex	known?	cost	path
Α	Υ	0	
В	Υ	3	E
С	Υ	2	А
D	Υ	1	А
Е	Υ	2	D
F		≤ 4	С
G		≤ 6	D



Order Added to Known Set:

A, D, C, E, B, F

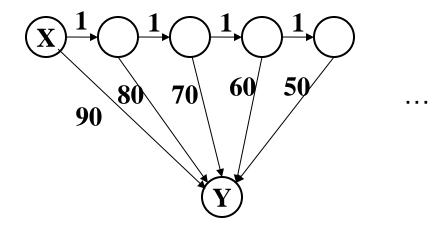
vertex	known?	cost	path
А	Υ	0	
В	Υ	3	Е
С	Υ	2	А
D	Υ	1	А
Е	Y	2	D
F	Y	4	С
G		≤ 6	D



Order Added to Known Set:

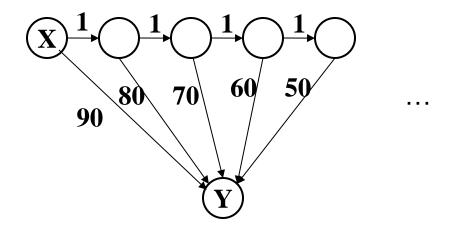
A, D, C, E, B, F, G

vertex	known?	cost	path
А	Υ	0	
В	Υ	3	Е
С	Υ	2	А
D	Υ	1	А
Е	Y	2	D
F	Y	4	С
G	Y	6	D



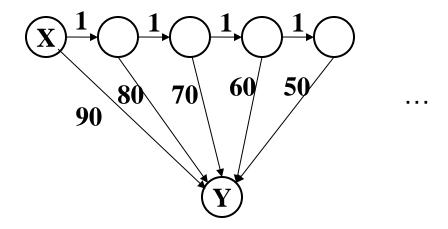
How will the best-cost-so-far for Y proceed?

Is this expensive?



How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive?



How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
 - At each step, always does what seems best at that step
 - A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - Turns out Dijkstra's algorithm IS globally optimal

Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

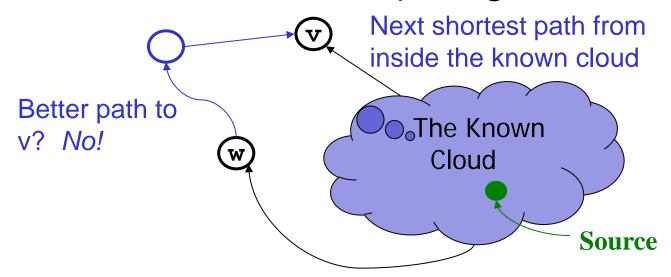
All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)



Suppose **v** is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
 - Else we would have picked a node closer to the cloud than v
- Suppose the actual shortest path to v is different
 - It won't use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Improving asymptotic running time

- So far: O(|V|²)
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Improving (?) asymptotic running time

- So far: O(|V|²)
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its current position in the priority queue
 - Conceptually simple, but takes some coding

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
                                                 O(|V|log|V
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
                                                 O(|E|log|V|
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

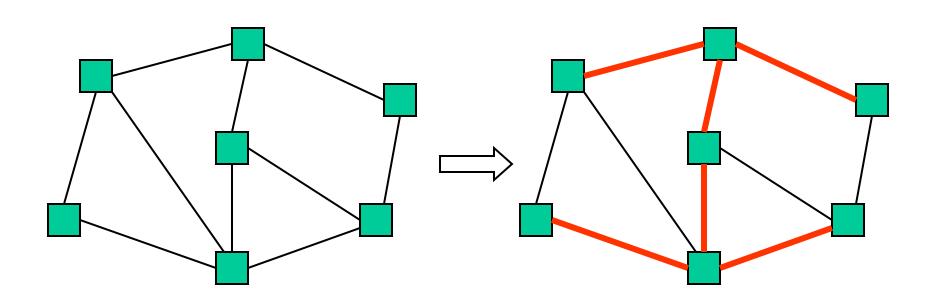
```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
                                                  O(|V|log|V|
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
                                                  O(|E|log|V|)
        decreaseKey(a, "new cost - old cost"
         a.path = b
                                           O(|V|\log|V|+|E|\log|V|)
```

Dense vs. sparse again

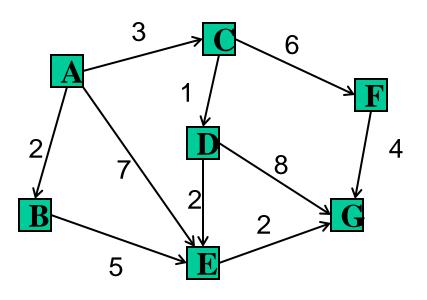
- First approach: O(|V|²)
- Second approach: O(|V|log|V|+|E|log|V|)
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if |E| > |V|, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

Looking Forward: Spanning Trees

- A simple problem: Given a connected undirected graph G=(V,E), find a minimal subset of edges such that G is still connected
 - A graph G2=(V,E2) such that G2 is connected and removing any edge from E2 makes G2 disconnected

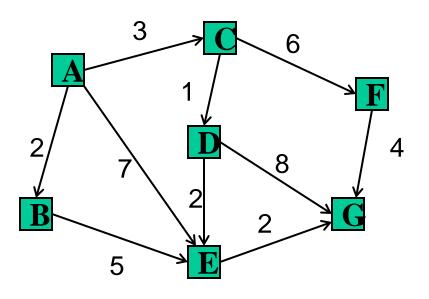


Start node: A



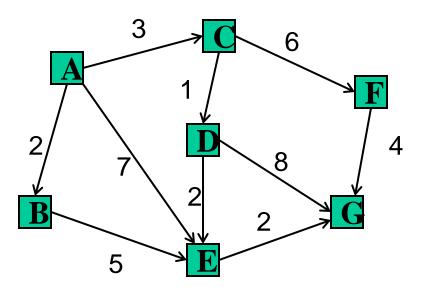
vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

Start node: A



vertex	known?	cost	path
Α	Υ	0	
В		≤ 2	А
С		≤3	А
D		??	
Е		≤7	А
F		??	
G		??	

Start node: A

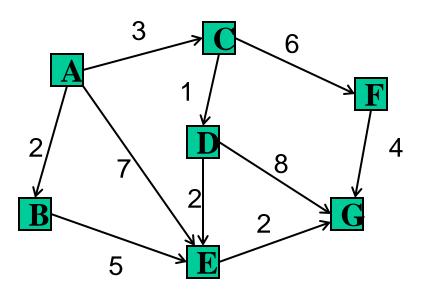


vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	А
С		≤3	А
D		??	
E		≤7	А
F		??	
G		??	

The path <A, B, E> is not shorter than the path <A, E>.

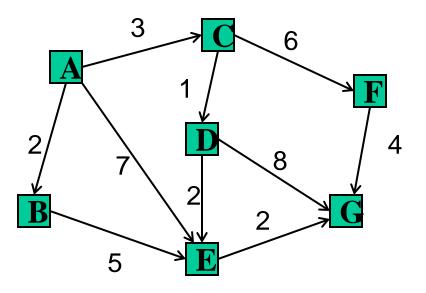
So E is not updated from B.

Start node: A



vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	А
С	Υ	3	А
D		≤4	С
E		≤7	А
F		≤9	С
G		??	

Start node: A

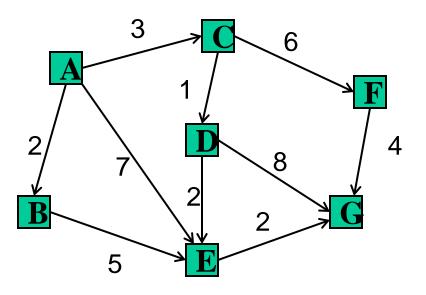


vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	А
С	Y	3	А
D	Υ	4	С
E		≤6	D
F		≤9	С
G		≤12	D

Can get to E through D with a shorter path.

Can also now get to G.

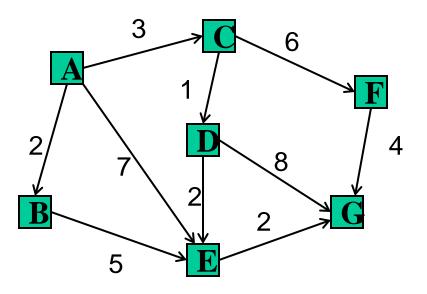
Start node: A



vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	А
С	Υ	3	А
D	Υ	4	С
E	Υ	6	D
F		≤9	С
G		≤8	E

Can get to G through E with a shorter path.

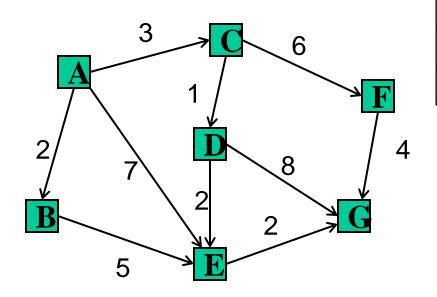
Start node: A



vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	А
С	Y	3	А
D	Υ	4	С
E	Υ	6	D
F		≤9	С
G	Υ	8	Е

G is a sink, so nothing can get updated.

Start node: A



vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	А
С	Y	3	А
D	Υ	4	С
E	Υ	6	D
F	Υ	9	С
G	Υ	8	Е

F does not lead to a shorter path to G.

DONE.