
CSE 373: Data Structures & Algorithms 
Lecture 17: Topological Sort / Graph Traversals 

Linda Shapiro 
Spring 2016 



Announcements  
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New Example 
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Is the relationship directed or undirected? 
Is the graph connected? 
How many components? 
Can we think of these as equivalence classes? 
 



Adjacency Matrix 

• Assign each node a number from 0 to |V|-1 
• A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0) 

– If M is the matrix, then M[u][v] being true                    
means there is an edge from u to v 
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Adjacency Matrix Properties 

• Running time to: 
– Get a vertex’s out-edges:  
– Get a vertex’s in-edges:  
– Decide if some edge exists:  
– Insert an edge: 
– Delete an edge:  

 
• Space requirements: 

– |V|2 bits 
 

• Best for sparse or dense graphs? 
– Best for dense graphs 
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Adjacency Matrix Properties 

• How will the adjacency matrix look for an undirected graph? 
– Undirected will be symmetric around the diagonal 

 
 
 
 
 

• How can we adapt the representation for weighted graphs? 
– Instead of a Boolean, store a number in each cell 
– Need some value to represent ‘not an edge’ 

• In some situations, 0 or -1 works 
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Adjacency List 

• Assign each node a number from 0 to |V|-1 
• An array of length |V| in which each entry stores a list of all 

adjacent vertices (e.g., linked list) 
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Adjacency List Properties 

• Running time to: 
– Get all of a vertex’s out-edges:  
 O(d) where d is out-degree of vertex   
– Get all of a vertex’s in-edges: 
 O(|E|) (but could keep a second adjacency list for this!)  
– Decide if some edge exists:  
 O(d) where d is out-degree of source 
– Insert an edge:  
    O(1) (unless you need to check if it’s there)  
– Delete an edge:  
    O(d) where d is out-degree of source  

 

• Space requirements: 
– O(|V|+|E|) 
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• Good for sparse graphs 



Algorithms 

 
• Topological sort: Given a DAG, order all the vertices so that 

every vertex comes before all of its neighbors 
 

• Shortest paths: Find the shortest or lowest-cost path from x to y 
– Related: Determine if there even is such a path 
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Topological Sort 

Problem: Given a DAG G=(V,E), output all vertices in an order such 
that no vertex appears before another vertex that has an edge to it 

 
 
 
 
 
 
 
 
 
One example output: 
     126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415 
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Questions and comments 

• Why do we perform topological sorts only on DAGs? 
– Because a cycle means there is no correct answer 

 
• Is there always a unique answer? 

– No, there can be 1 or more answers; depends on the graph 
 

• Do some DAGs have exactly 1 answer? 
– Yes, including all lists  

 
• Terminology: A DAG represents a partial order and a topological 

sort produces a total order that is consistent with it 
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Uses 
• Figuring out how to graduate 

 
• Computing an order in which to recompute cells in a spreadsheet 

 
• Determining an order to compile files using a Makefile 

 
• In general, taking a dependency graph and finding an order of 

execution  
 
• Figuring out how CSE grad students make espresso 
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A First Algorithm for Topological Sort 

1. Label (“mark”) each vertex with its in-degree 
– Think “write in a field in the vertex” 
– Could also do this via a data structure (e.g., array) on the side 

 
2. While there are vertices not yet output: 

a) Choose a vertex v with in-degree of 0 
b) Output v and mark it removed 
c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u 
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Example Output:  
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed? 
In-degree:    0       0     2      1       1       1     1      1      1      3 
 

CSE 142 CSE 143 
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CSE 413 

XYZ 



Example Output:  
   126 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1 

CSE 142 CSE 143 
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Example Output:  
   126 
   142 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1 
                                     0 

CSE 142 CSE 143 
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CSE 410 

MATH 126 
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Example Output:  
   126 
   142 
   143 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0 
                                     0 

CSE 142 CSE 143 

CSE 374 
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MATH 126 
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CSE 415 

CSE 413 
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Example Output:  
   126 
   142 
   143 
   374 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0                                      2 
                                     0 

CSE 142 CSE 143 
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CSE 415 

CSE 413 
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Example Output:  
   126 
   142 
   143 
   374 
   373 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x                              x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
   410 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x       x                     x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0                                                       1 

CSE 142 CSE 143 
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CSE 373 
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CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
   410 
   413 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x       x      x              x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0                                                       1 
                                                                                              0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
   410 
   413 
   XYZ 
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Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x       x      x              x      x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0                                                       1 
                                                                                              0 

CSE 142 CSE 143 

CSE 374 

CSE 373 
CSE 410 

MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Example Output:  
   126 
   142 
   143 
   374 
   373 
   417 
   410 
   413 
   XYZ 
   415 

Spring 2016 24 CSE373: Data Structures & Algorithms 

Node:          126 142  143  374  373  410  413  415  417  XYZ 
Removed?   x       x      x      x       x       x      x      x      x      x 
In-degree:    0       0     2      1       1       1     1      1      1      3 
                                     1      0       0       0     0      0      0      2 
                                     0                                                       1 
                                                                                              0 

CSE 142 CSE 143 
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CSE 373 
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MATH 126 

CSE 417 

CSE 415 

CSE 413 

XYZ 



Notice 

 
• Needed a vertex with in-degree 0 to start 

– Will always have at least 1 because no cycles 
 

• Ties among vertices with in-degrees of 0 can be broken 
arbitrarily 
– Can be more than one correct answer, by definition, 

depending on the graph 
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Running time? 

• What is the worst-case running time? 
– Initialization O(|V|+|E|) (assuming adjacency list) 
– Sum of all find-new-vertex O(|V|2) (because each O(|V|)) 
– Sum of all decrements O(|E|) (assuming adjacency list) 
– So total is O(|V|2) – not good for a sparse graph! 
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  labelEachVertexWithItsInDegree(); 
 for(ctr=0; ctr < numVertices; ctr++){ 
    v = findNewVertexOfDegreeZero(); 
    put v next in output 
   for each w adjacent to v 
      w.indegree--; 
  } 



Doing better 

The trick is to avoid searching for a zero-degree node every time! 
– Keep the “pending” zero-degree nodes in a list, stack, 

queue, bag, table, or something 
– Order we process them affects output but not correctness or 

efficiency provided add/remove are both O(1) 
 

Using a queue: 
 

1. Label each vertex with its in-degree, enqueue 0-degree nodes 
2. While queue is not empty 

a)  v = dequeue() 
b) Output v and remove it from the graph 
c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u, if new degree is 0, enqueue it 
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Running time? 
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• What is the worst-case running time? 
– Initialization: O(|V|+|E|) (assuming adjacency list) 
– Sum of all enqueues and dequeues: O(|V|) 
– Sum of all decrements: O(|E|) (assuming adjacency list) 
– So total is O(|E| + |V|) – much better for sparse graph! 
 

  labelAllAndEnqueueZeros(); 
 for(ctr=0; ctr < numVertices; ctr++){ 
    v = dequeue(); 
    put v next in output 
   for each w adjacent to v { 
      w.indegree--; 
      if(w.indegree==0)  
        enqueue(v); 
    } 
  } 



Small Example 
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a 

b 

c 

d 

e 

Nodes/Indegree 
a   b   c   d   e 
0   0   2   1   1 
--   0   1  1   1 
--   --   0  1   1 
--   --   --  0   1 
--   --   --  --  0 
 

Queue 
 
a b 
b 
c 
d 
e 
- 

Output 
 
a 
b 
c 
d 
e 



Graph Traversals 

Next problem: For an arbitrary graph and a starting node v, find all 
nodes reachable from v (i.e., there exists a path from v) 
– Possibly “do something” for each node  
– Examples: print to output, set a field, etc. 

 

• Subsumed problem: Is an undirected graph connected? 
• Related but different problem: Is a directed graph strongly 

connected? 
– Need cycles back to starting node 

 

Basic idea:  
– Keep following nodes 
– But “mark” nodes after visiting them, so the traversal terminates 

and processes each reachable node exactly once 
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Abstract Idea 
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  traverseGraph(Node start) { 
    Set pending = emptySet() 
    pending.add(start) 
     mark start as visited 
     while(pending is not empty) { 
       next = pending.remove() 
       for each node u adjacent to next 
          if(u is not marked) { 
            mark u 
            pending.add(u) 
          } 
     } 
  } 



Running Time and Options 

• Assuming add and remove are O(1), entire traversal is O(|E|) 
– Use an adjacency list representation 

 
• The order we traverse depends entirely on add and remove 

– Popular choice: a stack  “depth-first graph search”  “DFS” 
– Popular choice: a queue “breadth-first graph search” “BFS” 

 
• DFS and BFS are “big ideas” in computer science 

– Depth: recursively explore one part before going back to the 
other parts not yet explored 

– Breadth: explore areas closer to the start node first 
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Example: Depth First Search (recursive) 
• A tree is a graph and DFS and BFS are particularly easy to “see”  
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H G 

DFS(Node start) { 
  mark and process start 
  for each node u adjacent to start 
    if u is not marked 
      DFS(u) 
} 

•   
• Exactly what we called a “pre-order traversal” for trees 

– The marking is because we support arbitrary graphs and we 
want to process each node exactly once 

 

B D E C F G H A 



Example: Another Depth First Search 
(with stack) 

• A tree is a graph and DFS and BFS are particularly easy to “see”  
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DFS2(Node start) { 
  initialize stack s and push start 
  mark start as visited 
  while(s is not empty) { 
    next = s.pop() // and “process” 
    for each node u adjacent to next 
     if(u is not marked) 
       mark u and push onto s 
  } 
} 

•   
• A different but perfectly fine traversal, but is this DFS? 
• DEPENDS ON THE ORDER YOU PUSH CHILDREN INTO STACK 
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Search Tree Example:  
Fragment of 8-Puzzle Problem Space  
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Example: Breadth First Search 
• A tree is a graph and DFS and BFS are particularly easy to “see”  

Spring 2016 36 CSE373: Data Structures & Algorithms 

A 

B 

D E 

C 

F 

H G 

BFS(Node start) { 
  initialize queue q and enqueue start 
  mark start as visited 
  while(q is not empty) { 
    next = q.dequeue() // and “process” 
    for each node u adjacent to next 
     if(u is not marked) 
       mark u and enqueue onto q 
  } 
} 

•   
• A “level-order” traversal 
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Search Tree Example:  
Fragment of 8-Puzzle Problem Space  



Comparison when used for AI Search 

• Breadth-first always finds a solution (a path) if one exists and 
there is enough memory. 

 

• But depth-first can use less space in finding a path 
• A third approach: 

– Iterative deepening (IDFS):  
• Try DFS but disallow recursion more than K levels deep 
• If that fails, increment K and start the entire search over 

– Like BFS, finds shortest paths.  Like DFS, less space. 
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Saving the Path 

• Our graph traversals can answer the reachability question: 
– “Is there a path from node x to node y?” 

 

• But what if we want to actually output the path? 
– Like getting driving directions rather than just knowing it’s 

possible to get there! 
 

• How to do it:  
– Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the 
search, set v.path field to be u) 

– When you reach the goal, follow path fields back to where 
you started (and then reverse the answer) 

– If just wanted path length, could put the integer distance at 
each node instead 
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Example using BFS 
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Seattle 

San Francisco 
Dallas 

Salt Lake City 

What is a path from Seattle to Tyler 
–   Remember marked nodes are not re-enqueued 
–   Note shortest paths may not be unique 

Chicago 

Tyler 

1 

1 

1 

2 
3 

0 



Harder Problem: Add weights or costs to 
the graphs.  

• Driving directions 
 

• Cheap flight itineraries 
 

• Network routing 
 

• Critical paths in project management 
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Find minimal cost paths from a vertex v to all other vertices. 



Not as easy as BFS 

Why BFS won’t work: Shortest path may not have the fewest edges 
– Annoying when this happens with costs of flights 
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500 

100 
100 100 

100 

We will assume there are no negative weights 
• Problem is ill-defined if there are negative-cost cycles 
• Today’s algorithm is wrong if edges can be negative 

– There are other, slower (but not terrible) algorithms 
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-11 



Dijkstra’s Algorithm 

• Named after its inventor Edsger Dijkstra (1930-2002) 
– Truly one of the “founders” of computer science;                

this is just one of his many contributions 
– Many people have a favorite Dijkstra story, even if they 

never met him 
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