
CSE 373: Data Structures & Algorithms
Lecture 17: Topological Sort / Graph Traversals

Linda Shapiro
Spring 2016

Announcements

Spring 2016 2 CSE373: Data Structures & Algorithms

New Example

Winter 2015 CSE373: Data Structures & Algorithms 3

John

Parikh

Yao
Shu

Ezgi

Maryam

Is the relationship directed or undirected?
Is the graph connected?
How many components?
Can we think of these as equivalence classes?

Adjacency Matrix

• Assign each node a number from 0 to |V|-1
• A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

– If M is the matrix, then M[u][v] being true
means there is an edge from u to v

Spring 2016 4 CSE373: Data Structures & Algorithms

A(0)

B(1)

C(2)

D(3)

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

• Running time to:
– Get a vertex’s out-edges:
– Get a vertex’s in-edges:
– Decide if some edge exists:
– Insert an edge:
– Delete an edge:

• Space requirements:

– |V|2 bits

• Best for sparse or dense graphs?
– Best for dense graphs

Spring 2016 CSE373: Data Structures & Algorithms 5

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

O(|V|)
O(|V|)

O(1)
O(1)
O(1)

Adjacency Matrix Properties

• How will the adjacency matrix look for an undirected graph?
– Undirected will be symmetric around the diagonal

• How can we adapt the representation for weighted graphs?
– Instead of a Boolean, store a number in each cell
– Need some value to represent ‘not an edge’

• In some situations, 0 or -1 works

Spring 2016 CSE373: Data Structures & Algorithms 6

1 2

3 4

0 0 0 1
0 0 0 0
0 0 0 1
1 0 1 0

Adjacency List

• Assign each node a number from 0 to |V|-1
• An array of length |V| in which each entry stores a list of all

adjacent vertices (e.g., linked list)

Spring 2016 7 CSE373: Data Structures & Algorithms

0

1

2

3

1 /

0 /

3 1 /

/

A(0)

B(1)

C(2)

D(3)

Adjacency List Properties

• Running time to:
– Get all of a vertex’s out-edges:
 O(d) where d is out-degree of vertex
– Get all of a vertex’s in-edges:
 O(|E|) (but could keep a second adjacency list for this!)
– Decide if some edge exists:
 O(d) where d is out-degree of source
– Insert an edge:
 O(1) (unless you need to check if it’s there)
– Delete an edge:
 O(d) where d is out-degree of source

• Space requirements:
– O(|V|+|E|)

Spring 2016 CSE373: Data Structures & Algorithms 8

0

1

2

3

1 /

0 /

3 1 /

/

• Good for sparse graphs

Algorithms

• Topological sort: Given a DAG, order all the vertices so that

every vertex comes before all of its neighbors

• Shortest paths: Find the shortest or lowest-cost path from x to y
– Related: Determine if there even is such a path

Spring 2016 9 CSE373: Data Structures & Algorithms

Topological Sort

Problem: Given a DAG G=(V,E), output all vertices in an order such
that no vertex appears before another vertex that has an edge to it

One example output:
 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Spring 2016 10 CSE373: Data Structures & Algorithms

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Questions and comments

• Why do we perform topological sorts only on DAGs?
– Because a cycle means there is no correct answer

• Is there always a unique answer?

– No, there can be 1 or more answers; depends on the graph

• Do some DAGs have exactly 1 answer?
– Yes, including all lists

• Terminology: A DAG represents a partial order and a topological

sort produces a total order that is consistent with it

Spring 2016 11 CSE373: Data Structures & Algorithms

0

1
3

2

4

Uses
• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of

execution

• Figuring out how CSE grad students make espresso

Spring 2016 12 CSE373: Data Structures & Algorithms

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
– Think “write in a field in the vertex”
– Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

a) Choose a vertex v with in-degree of 0
b) Output v and mark it removed
c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u

Spring 2016 13 CSE373: Data Structures & Algorithms

Example Output:

Spring 2016 14 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 0 2 1 1 1 1 1 1 3

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126

Spring 2016 15 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142

Spring 2016 16 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143

Spring 2016 17 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374

Spring 2016 18 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373

Spring 2016 19 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417

Spring 2016 20 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410

Spring 2016 21 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413

Spring 2016 22 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413
 XYZ

Spring 2016 23 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413
 XYZ
 415

Spring 2016 24 CSE373: Data Structures & Algorithms

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Notice

• Needed a vertex with in-degree 0 to start

– Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken
arbitrarily
– Can be more than one correct answer, by definition,

depending on the graph

Spring 2016 25 CSE373: Data Structures & Algorithms

Running time?

• What is the worst-case running time?
– Initialization O(|V|+|E|) (assuming adjacency list)
– Sum of all find-new-vertex O(|V|2) (because each O(|V|))
– Sum of all decrements O(|E|) (assuming adjacency list)
– So total is O(|V|2) – not good for a sparse graph!

Spring 2016 26 CSE373: Data Structures & Algorithms

 labelEachVertexWithItsInDegree();
 for(ctr=0; ctr < numVertices; ctr++){
 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v
 w.indegree--;
 }

Doing better

The trick is to avoid searching for a zero-degree node every time!
– Keep the “pending” zero-degree nodes in a list, stack,

queue, bag, table, or something
– Order we process them affects output but not correctness or

efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v = dequeue()
b) Output v and remove it from the graph
c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u, if new degree is 0, enqueue it

Spring 2016 27 CSE373: Data Structures & Algorithms

Running time?

Spring 2016 28 CSE373: Data Structures & Algorithms

• What is the worst-case running time?
– Initialization: O(|V|+|E|) (assuming adjacency list)
– Sum of all enqueues and dequeues: O(|V|)
– Sum of all decrements: O(|E|) (assuming adjacency list)
– So total is O(|E| + |V|) – much better for sparse graph!

 labelAllAndEnqueueZeros();
 for(ctr=0; ctr < numVertices; ctr++){
 v = dequeue();
 put v next in output
 for each w adjacent to v {
 w.indegree--;
 if(w.indegree==0)
 enqueue(v);
 }
 }

Small Example

Winter 2015 CSE373: Data Structures & Algorithms 29

a

b

c

d

e

Nodes/Indegree
a b c d e
0 0 2 1 1
-- 0 1 1 1
-- -- 0 1 1
-- -- -- 0 1
-- -- -- -- 0

Queue

a b
b
c
d
e
-

Output

a
b
c
d
e

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all
nodes reachable from v (i.e., there exists a path from v)
– Possibly “do something” for each node
– Examples: print to output, set a field, etc.

• Subsumed problem: Is an undirected graph connected?
• Related but different problem: Is a directed graph strongly

connected?
– Need cycles back to starting node

Basic idea:
– Keep following nodes
– But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

Spring 2016 30 CSE373: Data Structures & Algorithms

Abstract Idea

Spring 2016 31 CSE373: Data Structures & Algorithms

 traverseGraph(Node start) {
 Set pending = emptySet()
 pending.add(start)
 mark start as visited
 while(pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
 }

Running Time and Options

• Assuming add and remove are O(1), entire traversal is O(|E|)
– Use an adjacency list representation

• The order we traverse depends entirely on add and remove

– Popular choice: a stack “depth-first graph search” “DFS”
– Popular choice: a queue “breadth-first graph search” “BFS”

• DFS and BFS are “big ideas” in computer science

– Depth: recursively explore one part before going back to the
other parts not yet explored

– Breadth: explore areas closer to the start node first

Spring 2016 32 CSE373: Data Structures & Algorithms

Example: Depth First Search (recursive)
• A tree is a graph and DFS and BFS are particularly easy to “see”

Spring 2016 33 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

•
• Exactly what we called a “pre-order traversal” for trees

– The marking is because we support arbitrary graphs and we
want to process each node exactly once

B D E C F G H A

Example: Another Depth First Search
(with stack)

• A tree is a graph and DFS and BFS are particularly easy to “see”

Spring 2016 34 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

DFS2(Node start) {
 initialize stack s and push start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

•
• A different but perfectly fine traversal, but is this DFS?
• DEPENDS ON THE ORDER YOU PUSH CHILDREN INTO STACK

C F H G B E D A

A

C
B

35

Search Tree Example:
Fragment of 8-Puzzle Problem Space

1

2

3

4

5

Example: Breadth First Search
• A tree is a graph and DFS and BFS are particularly easy to “see”

Spring 2016 36 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

•
• A “level-order” traversal

B C D E F G H A

37

Search Tree Example:
Fragment of 8-Puzzle Problem Space

Comparison when used for AI Search

• Breadth-first always finds a solution (a path) if one exists and
there is enough memory.

• But depth-first can use less space in finding a path
• A third approach:

– Iterative deepening (IDFS):
• Try DFS but disallow recursion more than K levels deep
• If that fails, increment K and start the entire search over

– Like BFS, finds shortest paths. Like DFS, less space.

Spring 2016 38 CSE373: Data Structures & Algorithms

Saving the Path

• Our graph traversals can answer the reachability question:
– “Is there a path from node x to node y?”

• But what if we want to actually output the path?
– Like getting driving directions rather than just knowing it’s

possible to get there!

• How to do it:
– Instead of just “marking” a node, store the previous node

along the path (when processing u causes us to add v to the
search, set v.path field to be u)

– When you reach the goal, follow path fields back to where
you started (and then reverse the answer)

– If just wanted path length, could put the integer distance at
each node instead

Spring 2016 39 CSE373: Data Structures & Algorithms

Example using BFS

Spring 2016 40 CSE373: Data Structures & Algorithms

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Tyler
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Tyler

1

1

1

2
3

0

Harder Problem: Add weights or costs to
the graphs.

• Driving directions

• Cheap flight itineraries

• Network routing

• Critical paths in project management

Spring 2016 41 CSE373: Data Structures & Algorithms

Find minimal cost paths from a vertex v to all other vertices.

Not as easy as BFS

Why BFS won’t work: Shortest path may not have the fewest edges
– Annoying when this happens with costs of flights

Spring 2016 42 CSE373: Data Structures & Algorithms

500

100
100 100

100

We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Today’s algorithm is wrong if edges can be negative

– There are other, slower (but not terrible) algorithms

7

10 5

-11

Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)
– Truly one of the “founders” of computer science;

this is just one of his many contributions
– Many people have a favorite Dijkstra story, even if they

never met him

Spring 2016 43 CSE373: Data Structures & Algorithms

	CSE 373: Data Structures & Algorithms�Lecture 17: Topological Sort / Graph Traversals
	Announcements	
	New Example
	Adjacency Matrix
	Adjacency Matrix Properties
	Adjacency Matrix Properties
	Adjacency List
	Adjacency List Properties
	Algorithms
	Topological Sort
	Questions and comments
	Uses
	A First Algorithm for Topological Sort
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Notice
	Running time?
	Doing better
	Running time?
	Small Example
	Graph Traversals
	Abstract Idea
	Running Time and Options
	Example: Depth First Search (recursive)
	Example: Another Depth First Search (with stack)
	Search Tree Example: �Fragment of 8-Puzzle Problem Space
	Example: Breadth First Search
	Search Tree Example: �Fragment of 8-Puzzle Problem Space
	Comparison when used for AI Search
	Saving the Path
	Example using BFS
	Harder Problem: Add weights or costs to the graphs.
	Not as easy as BFS
	Dijkstra’s Algorithm

