

CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions

Linda Shapiro Spring 2016

Announcements

 Friday: Review List and go over answers to Practice Problems

Hash Tables: Review

- Aim for constant-time (i.e., O(1)) find, insert, and delete
 - "On average" under some reasonable assumptions
- A hash table is an array of some fixed size
 - But growable as we'll see

hash table

0

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Thoughts on chaining

- Worst-case time for find?
 - Linear
 - But only with really bad luck or bad hash function
 - So not worth avoiding (e.g., with balanced trees at each bucket)
- Beyond asymptotic complexity, some "data-structure engineering" may be warranted
 - Linked list vs. array vs. tree
 - Move-to-front upon access
 - Maybe leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
 - A time-space trade-off...

Time vs. space (constant factors only here)

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is ____

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ ie. The average list has length λ

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ ie. The average list has length λ

So if some inserts are followed by *random* finds, then on average:

Each unsuccessful find compares against _____ items

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ ie. The average list has length λ

So if some inserts are followed by *random* finds, then on average:

- Each unsuccessful find compares against \(\lambda \) items
- Each successful find compares against _____ items

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ ie. The average list has length λ

So if some inserts are followed by *random* finds, then on average:

- Each unsuccessful find compares against \(\lambda \) items
- Each successful find compares against \(\lambda / 2 \) items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining

- Another simple idea: If h(key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	/
1	/
2	/
3	/
4	/
5	/
6	/
7	/
8	38
9	/

- Another simple idea: If h(key) is already full,
 try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

	1		
Ĺ	J		
_	_		

38

19

9

Another simple idea: If h(key) is already full,

 try (h(key) + 1) % TableSize. If full,
 try (h(key) + 2) % TableSize. If full,
 try (h(key) + 3) % TableSize. If full...

 Example: insert 38, 19, 8, 109, 10

38

19

8

9

```
Another simple idea: If h(key) is already full,
                                                   0
 - try (h(key) + 1) % TableSize. If full,
                                                         109
 - try (h(key) + 2) % TableSize. If full,
                                                   2
 - try (h(key) + 3) % TableSize. If full...
                                                   3
                                                   4
Example: insert 38, 19, 8, 109, 10
                                                   5
                                                   6
                                                   8
                                                         38
                                                   9
                                                         19
```

```
Another simple idea: If h(key) is already full,
                                                   0
 - try (h(key) + 1) % TableSize. If full,
                                                         109
 - try (h(key) + 2) % TableSize. If full,
                                                   2
                                                         10
 - try (h(key) + 3) % TableSize. If full...
                                                   3
                                                   4
Example: insert 38, 19, 8, 109, 10
                                                   5
                                                   6
                                                   8
                                                         38
                                                   9
                                                         19
```

Probing hash tables

Trying the next spot is called probing (also called open addressing)

- We just did linear probing
 - ith probe was (h(key) + i) % TableSize
- In general have some probe function f and use h(key) + f(i) % TableSize

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more O(1)

Other operations

insert finds an open table position using a probe function

What about **find**?

- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about delete?

- Must use "lazy" deletion. Why?
 - Marker indicates "no data here, but don't stop probing"
- Note: delete with chaining is plain-old list-remove

(Primary) Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (which is a good thing)

Tends to produce clusters, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

Analysis of Linear Probing

- Trivial fact: For any $\lambda < 1$, linear probing will find an empty slot
 - It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove:
 Average # of probes given λ (in the limit as TableSize →∞)
 - Unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)$
 - Successful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$
- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes "large table" but point remains)

By comparison, chaining performance is linear in λ and has no trouble with λ>1

Quadratic probing

- We can avoid primary clustering by changing the probe function
 (h(key) + f(i)) % TableSize
- A common technique is quadratic probing:

```
f(i) = i^2
```

- So probe sequence is:
 - 0th probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize
 - ...
 - ith probe: (h(key) + i²) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

0	
1	
2	
3	
4	
2 3 4 5 6	
7	
8	
9	

0	
1	
2	
3	
4	
5 6	
6	
7	
8	
9	89

0	
1	
2	
2 3	
4	
5	
6	
7	
8	18
9	89

0	49
1	
2	
2 3	
4	
5 6	
6	
7	
8	18
9	89

```
TableSize=10
Insert:
89
18
49
58
79
```

0	49
1	
2	58
2 3	
4	
5 6	
6	
7	
8	18
9	89

TableSize=10
Insert:
89
18
49
58
79

0	49
1	
2	58
3	79
4	
5 6	
6	
7	
8	18
9	89

TableSize=10
Insert:
89
18
49
58
79

$$TableSize = 7$$

$$TableSize = 7$$

76	(76 % 7 = 6)
40	(40 % 7 = 5)
48	(48 % 7 = 6)
5	(5 % 7 = 5)
55	(55 % 7 = 6)
47	(47 % 7 = 5)

$$TableSize = 7$$

0	48
1	
2	
3	
4	
5	40
6	76

$$TableSize = 7$$

76	(76 % 7 = 6)
40	(40 % 7 = 5)
48	(48 % 7 = 6)
5	(5 % 7 = 5)
55	(55 % 7 = 6)
47	(47 % 7 = 5)

0	48
1	
2	5
3	
4	
5	40
6	76

$$TableSize = 7$$

0	48
1	
2	5
3	55
4	
5	40
6	76

$$TableSize = 7$$

76	(76 % 7 = 6)
40	(40 % 7 = 5)
48	(48 % 7 = 6)
5	(5 % 7 = 5)
55	(55 % 7 = 6)
47	(47 % 7 = 5)

0	48
1	
2	5
3	55
4	
5	40
6	76

$$TableSize = 7$$

Insert:

76	(76 % 7 = 6)
40	(40 % 7 = 5)
48	(48 % 7 = 6)
5	(5 % 7 = 5)
55	(55 % 7 = 6)
47	(47 % 7 = 5)

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

• No where to put the 47!

From Bad News to Good News

Bad news:

 Quadratic probing can cycle through the same full indices, never terminating despite table not being full

Good news:

- If **TableSize** is *prime* and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most **TableSize/2** probes
- So: If you keep $\lambda < \frac{1}{2}$ and **TableSize** is *prime*, no need to detect cycles

WOOHOO

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering:
 no problem with keys initially hashing to the same neighborhood
- But it's no help if keys initially hash to the same index
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Double hashing

Idea:

- Given two good hash functions h and g, it is very unlikely that for some key, h(key) == g(key)
- So make the probe function f(i) = i*g(key)

Probe sequence:

- 0th probe: h(key) % TableSize
- 1st probe: (h(key) + g(key)) % TableSize
- 2nd probe: (h(key) + 2*g(key)) % TableSize
- 3rd probe: (h(key) + 3*g(key)) % TableSize
- ...
- ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) cannot be 0

Double-hashing analysis

- Intuition: Because each probe is "jumping" by g(key) each time, we "leave the neighborhood" and "go different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
 - It is known that this cannot happen in at least one case:
 - h(key) = key % p
 - g(key) = q (key % q)
 - 2 < q < p
 - p and q are prime

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything
- With chaining, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?</p>
 - Consider average or max size of non-empty chains?
- For probing, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except that won't be prime!
 - So go about twice-as-big
 - Can have a list of prime numbers in your code since you won't grow more than 20-30 times

Summary

- Hashing gives us approximately O(1) behavior for both insert and find.
- Collisions are what ruin it.
- There are several different collision strategies.
 - Chaining just uses linked lists pointed to by the hash table bins.
 - Probing uses various methods for computing the next index to try if the first one is full.
 - Rehashing makes a new, bigger table.
 - If the table is kept reasonably empty (small load factor), and the hash function works well, we will get the kind of behavior we want.