CSE373: Data Structures \& Algorithms Lecture 14: Hash Collisions

Linda Shapiro
Spring 2016

Announcements

- Friday: Review List and go over answers to Practice Problems

Hash Tables: Review

- Aim for constant-time (i.e., O(1)) find, insert, and delete
- "On average" under some reasonable assumptions
- A hash table is an array of some fixed size
- But growable as we'll see

TableSize -1

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

- Ideas?

Separate Chaining

0	1
1	/
2	1
3	/
4	/
5	/
6	1
7	1
8	1
9	1

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and TableSize $=10$

Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42
with mod hashing and TableSize $=10$

Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42
with mod hashing and TableSize $=10$

Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42
with mod hashing and TableSize $=10$

Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42
with mod hashing and TableSize $=10$

Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing and TableSize = 10

Thoughts on chaining

- Worst-case time for find?
- Linear
- But only with really bad luck or bad hash function
- So not worth avoiding (e.g., with balanced trees at each bucket)
- Beyond asymptotic complexity, some "data-structure engineering" may be warranted
- Linked list vs. array vs. tree
- Move-to-front upon access
- Maybe leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
- A time-space trade-off...

Time vs. space (constant factors only here)

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$
\lambda=\frac{\mathrm{N}}{\text { TableSize }} \leftarrow \text { number of elements }
$$

Under chaining, the average number of elements per bucket is \qquad

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$
\lambda=\frac{\mathrm{N}}{\text { TableSize }} \leftarrow \text { number of elements }
$$

Under chaining, the average number of elements per bucket is λ ie. The average list has length λ

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$
\lambda=\frac{\mathrm{N}}{\text { TableSize }} \leftarrow \text { number of elements }
$$

Under chaining, the average number of elements per bucket is λ ie. The average list has length λ

So if some inserts are followed by random finds, then on average:

- Each unsuccessful find compares against \qquad items

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$
\lambda=\frac{\mathrm{N}}{\text { TableSize }} \leftarrow \text { number of elements }
$$

Under chaining, the average number of elements per bucket is λ ie. The average list has length λ

So if some inserts are followed by random finds, then on average:

- Each unsuccessful find compares against λ items
- Each successful find compares against \qquad items

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$
\lambda=\frac{\mathrm{N}}{\text { TableSize }} \leftarrow \text { number of elements }
$$

Under chaining, the average number of elements per bucket is λ ie. The average list has length λ

So if some inserts are followed by random finds, then on average:

- Each unsuccessful find compares against λ items
- Each successful find compares against $\lambda / 2$ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining

Alternative: No lists; Use empty space in the table

- Another simple idea: If \mathbf{h} (key) is already full,
- try (h(key) + 1) \% TableSize. If full,
- try (h(key) + 2) \% TableSize. If full,
- try (h(key) + 3) \% TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	1
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	38
9	/

Alternative: Use empty space in the table

- Another simple idea: If $\mathbf{h}($ key $)$ is already full,
- try (h(key) + 1) \% TableSize. If full,
- try (h(key) + 2) \% TableSize. If full,
- try (h(key) + 3) \% TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	/
1	/
2	/
3	/
4	/
5	/
6	/
7	/
8	38
9	19

Alternative: Use empty space in the table

- Another simple idea: If $\mathbf{h}($ key $)$ is already full,
- try (h(key) + 1) \% TableSize. If full,
- try (h(key) + 2) \% TableSize. If full,
- try (h(key) + 3) \% TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	8
1	/
2	/
3	/
4	/
5	/
6	/
7	/
8	38
9	19

Alternative: Use empty space in the table

- Another simple idea: If $\mathbf{h}($ key $)$ is already full,
- try (h(key) + 1) \% TableSize. If full,
- try (h(key) + 2) \% TableSize. If full,
- try (h(key) + 3) \% TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	8
1	109
2	/
3	/
4	/
5	/
6	/
7	/
8	38
9	19

Alternative: Use empty space in the table

- Another simple idea: If \mathbf{h} (key) is already full,
- try (h(key) + 1) \% TableSize. If full,
- try (h(key) + 2) \% TableSize. If full,
- try (h(key) + 3) \% TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	8
1	109
2	10
3	/
4	/
5	/
6	/
7	/
8	38
9	19

Probing hash tables

Trying the next spot is called probing (also called open addressing)

- We just did linear probing
- $\mathbf{i}^{\text {th }}$ probe was (h(key) + i) \% TableSize
- In general have some probe function f and use h(key) + f(i) \% TableSize

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more $O(1)$

Other operations

insert finds an open table position using a probe function

What about find?

- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about delete?

- Must use "lazy" deletion. Why?
- Marker indicates "no data here, but don't stop probing"
- Note: delete with chaining is plain-old list-remove

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (which is a good thing)

Tends to produce clusters, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

Analysis of Linear Probing

- Trivial fact: For any $\lambda<1$, linear probing will find an empty slot
- It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove:

Average \# of probes given λ (in the limit as TableSize $\rightarrow \infty$)

- Unsuccessful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

- Successful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)
$$

- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

In a chart

- Linear-probing performance degrades rapidly as table gets full
- (Formula assumes "large table" but point remains)

Linear Probing

Linear Probing

- By comparison, chaining performance is linear in λ and has no trouble with $\lambda>1$

Quadratic probing

- We can avoid primary clustering by changing the probe function (h(key) + f(i)) \% TableSize
- A common technique is quadratic probing:

$$
f(i)=i^{2}
$$

- So probe sequence is:
- $0^{\text {th }}$ probe: $\mathrm{h}($ key) \% TableSize
- $1^{\text {st }}$ probe: $(\mathrm{h}($ key $)+1) \%$ TableSize
- $2^{\text {nd }}$ probe: $(\mathrm{h}($ key $)+4) \%$ TableSize
- $3^{\text {rd }}$ probe: (h(key) + 9) \% TableSize
- ...
- ith probe: (h(key) + i²) \% TableSize
- Intuition: Probes quickly "leave the neighborhood"

Quadratic Probing Example

TableSize=10
 Insert:
 89
 18
 49
 58
 79

Quadratic Probing Example

TableSize=10
 Insert:
 89
 18
 49
 58
 79

Quadratic Probing Example

TableSize=10
 Insert:
 89
 18
 49
 58
 79

Quadratic Probing Example

TableSize=10
 Insert:
 89
 18
 49
 58
 79

Quadratic Probing Example

TableSize=10
 Insert:
 89
 18
 49
 58
 79

Quadratic Probing Example

TableSize=10
 Insert:
 89
 18
 49
 58
 79

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	$(5 \% 7=5)$
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	$(5 \% 7=5)$
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	$(5 \% 7=5)$
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	$(5 \% 7=5)$
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	$(5 \% 7=5)$
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	$(5 \% 7=5)$
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	$(5 \% 7=5)$
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Doh!: For all $n,\left(\left(\mathbf{n}^{*} \mathbf{n}\right)+5\right) \% 7$ is $0,2,5$, or 6

- No where to put the 47 !

From Bad News to Good News

- Bad news:
- Quadratic probing can cycle through the same full indices, never terminating despite table not being full
- Good news:
- If TableSize is prime and $\lambda<1 / 2$, then quadratic probing will find an empty slot in at most TableSize/2 probes
- So: If you keep $\lambda<1 / 2$ and TableSize is prime, no need to detect cycles

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood
- But it's no help if keys initially hash to the same index
- Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Double hashing

Idea:

- Given two good hash functions h and g, it is very unlikely that for some key, \mathbf{h} (key) $==\mathbf{g}$ (key)
- So make the probe function $\mathbf{f (i)}=\mathbf{i * g}($ key $)$

Probe sequence:

- $0^{\text {th }}$ probe: $\mathrm{h}($ key $) \%$ TableSize
- $1^{\text {st }}$ probe: $(\mathrm{h}($ key $)+\mathrm{g}($ key)) \% TableSize
- 2nd probe: (h(key) + 2*g(key)) \% TableSize
- $3^{\text {rd }}$ probe: (h(key) + 3*g(key)) \% TableSize
- ith probe: (h(key) + i*g(key)) \% TableSize

Detail: Make sure \mathbf{g} (key) cannot be $\mathbf{0}$

Double-hashing analysis

- Intuition: Because each probe is "jumping" by \mathbf{g} (key) each time, we "leave the neighborhood" and "go different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
- It is known that this cannot happen in at least one case:
- h(key) = key \% p
- g(key) = q - (key \% q)
- $2<q<p$
- \mathbf{p} and \mathbf{q} are prime

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything
- With chaining, we get to decide what "too full" means
- Keep load factor reasonable (e.g., < 1)?
- Consider average or max size of non-empty chains?
- For probing, half-full is a good rule of thumb
- New table size
- Twice-as-big is a good idea, except that won't be prime!
- So go about twice-as-big
- Can have a list of prime numbers in your code since you won't grow more than 20-30 times

Summary

- Hashing gives us approximately O(1) behavior for both insert and find.
- Collisions are what ruin it.
- There are several different collision strategies.

- Chaining just uses linked lists pointed to by the hash table bins.
- Probing uses various methods for computing the next index to try if the first one is full.
- Rehashing makes a new, bigger table.
- If the table is kept reasonably empty (small load factor), and the hash function works well, we will get the kind of behavior we want.

