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Announcements 

• Homework 3 due in Friday 
• Help sessions: Do we need them? 
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The plan 

Last lecture: 
 

• Disjoint sets 
• The union-find ADT for disjoint sets 
 
Today’s lecture: 
 

• Basic implementation of the union-find ADT with “up trees” 
• Optimizations that make the implementation much faster 
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Union-Find ADT 

• Given an unchanging set S, create an initial partition of a set 
– Typically each item in its own subset: {a}, {b}, {c}, … 
– Give each subset a “name” by choosing a representative 

element 
 

• Operation find takes an element of S and returns the 
representative element of the subset it is in 
 

• Operation union takes two subsets and (permanently) makes 
one larger subset 
– A different partition with one fewer set 
– Affects result of subsequent find operations 
– Choice of representative element up to implementation 
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Implementation – our goal 

• Start with an initial partition of n subsets 
– Often 1-element sets, e.g., {1}, {2}, {3}, …, {n} 

 
• May have any number of find operations  

 
• May have up to n-1 union operations in any order 

– After n-1 union operations, every find returns same single 
set 
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Up-tree data structure 

• Tree with: 
– No limit on branching factor  
– References from children to parent 

 

• Start with forest of 1-node trees 
 
 

• Possible forest after several unions: 
– Will use roots for 
    set names 
 

Spring 2016 6 CSE373: Data Structures & Algorithms 

1 2 3 4 5 6 7 

1 

2 

3 

4 5 

6 

7 



Find  

find(x): 
– Assume we have O(1) access to each node 

• Will use an array where index i holds node i 
– Start at x and follow parent pointers to root 
– Return the root 
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Union 
union(x,y): 

– Assume x and y are roots 
• Else find the roots of their trees 

– Assume distinct trees (else do nothing) 
– Change root of one to have parent be the root of the other 

• Notice no limit on branching factor 
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Simple implementation 

• If set elements are contiguous numbers (e.g., 1,2,…,n), use an 
array of length n called up 
– Starting at index 1 on slides 
– Put in array index of parent, with 0 (or -1, etc.) for a root 

• Example: 
 

• Example: 
 
 
 
 
 

• If set elements are not contiguous numbers, could have a 
separate dictionary to map elements (keys) to numbers (values) 
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Implement operations 

• Worst-case run-time for union?   
• Worst-case run-time for find?   
• Worst-case run-time for m finds and n-1 unions?   
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 
     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 up[y] = x; 
} 
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Two key optimizations 

1. Improve union so it stays O(1) but makes find O(log n)  
– So m finds and n-1 unions is O(m log n + n) 
– Union-by-size: connect smaller tree to larger tree 
 

2. Improve find so it becomes even faster 
– Make m finds and n-1 unions almost O(m + n) 
– Path-compression: connect directly to root during finds 
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The bad case to avoid 
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Union-by-size 

Union-by-size: 
– Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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Union-by-size 

Union-by-size: 
– Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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Array implementation 

Keep the size (number of nodes in a second array) 
– Or have one array of objects with two fields 
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Nifty trick 

Actually we do not need a second array… 
– Instead of storing 0 for a root, store negation of size 
– So up value < 0 means a root 
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The Bad case? Now a Great case… 
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General analysis 

• Showing one worst-case example is now good is not a proof 
that the worst-case has improved 
 

• So let’s prove: 
– union is still O(1) – this is “obvious” 
– find is now O(log n)  

 
• Claim: If we use union-by-size, an up-tree of height h has at 

least 2h nodes 
– Proof by induction on h… 
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Exponential number of nodes 

P(h)= With union-by-size, up-tree of height h has at least 2h nodes 
 

Proof by induction on h… 
 

• Base case: h = 0: The up-tree has 1 node and 20= 1 
• Inductive case: Assume P(h) and show P(h+1) 

– A height h+1 tree T has at least one height h child T1 
– T1 has at least 2h nodes by induction 
– And T has at least as many nodes not in T1 than in T1 

• Else union-by-size would have  
   had T point to T1, not T1 point to T (!!) 

– So total number of nodes is at least 2h + 2h = 2h+1
. 
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The key idea 

Intuition behind the proof: No one child can have more than half the 
nodes 
 
 
 
 
 
So, as usual, if number of nodes is exponential in height, 
then height is logarithmic in number of nodes 
 
So find is O(log n)  
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The new worst case 
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n/2 Unions-by-size 
 
 
 
 
n/4 Unions-by-size 



The new worst case (continued) 
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After n/2 + n/4 + …+ 1 Unions-by-size: 

Worst 
find Height grows by 1 a total of log n times 

log n 



What about union-by-height 

We could store the height of each root rather than size 
 
• Still guarantees logarithmic worst-case find 

– Proof left as an exercise if interested 
 

• But does not work well with our next optimization 
– Maintaining height becomes inefficient, but maintaining size 

still easy 
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Two key optimizations 

1. Improve union so it stays O(1) but makes find O(log n)  
– So m finds and n-1 unions is O(m log n + n) 
– Union-by-size: connect smaller tree to larger tree 
 

2. Improve find so it becomes even faster 
– Make m finds and n-1 unions almost O(m + n) 
– Path-compression: connect directly to root during finds 
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Path compression 

• Simple idea: As part of a find, change each encountered 
node’s parent to point directly to root 
– Faster future finds for everything on the path (and their 

descendants) 
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Pseudocode 
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// performs path compression 
int find(i) { 
  // find root 
  int r = i 
   while(up[r] > 0) 
     r = up[r] 
 
  // compress path 
  if i==r 
    return r; 
  int old_parent = up[i] 
  while(old_parent != r) { 
    up[i] = r 
    i = old_parent; 
    old_parent = up[i] 
  } 
  return r; 
} 
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i=3 
r=3 
 
r=6 
r=5 
r=7 

old_parent=6 
 
up[3]=7 
i=6 
old_parent=5 
 
up[6]=7 
i=5 
old_parent=7 
 

Example 
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So, how fast is it? 

A single worst-case find could be O(log n)  
– But only if we did a lot of worst-case unions beforehand 
– And path compression will make future finds faster 

 
Turns out the amortized worst-case bound is much better than O(log n)  

• total for m finds and n-1 unions is almost O(m+n) 
 

 
– We won’t prove it – see text if curious 
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