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Announcements

« Homework 3 due in Friday
 Help sessions: Do we need them?
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The plan

Last lecture:

* Disjoint sets
 The union-find ADT for disjoint sets

Today’s lecture:

« Basic implementation of the union-find ADT with “up trees”
« Optimizations that make the implementation much faster
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Union-Find ADT

« Given an unchanging set S, create an initial partition of a set
— Typically each item in its own subset: {a}, {b}, {c}, ...

— Give each subset a “name” by choosing a representative
element

« Operation Tind takes an element of S and returns the
representative element of the subset it is in

« Operation union takes two subsets and (permanently) makes
one larger subset

— A different partition with one fewer set
— Affects result of subsequent find operations

— Choice of representative element up to implementation
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Implementation — our goal

o Start with an initial partition of n subsets
— Often 1l-element sets, e.qg., {1}, {2}, {3}, ..., {n}

 May have any number of find operations

 May have up to n-1 unton operations in any order
— After n-1 uniton operations, every find returns same single
set
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Up-tree data structure

 Tree with:
— No limit on branching factor
— References from children to parent

e Start with forest of 1-node trees
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Find

find(x):
— Assume we have O(1) access to each node
« Will use an array where index 1 holds node 1

— Start at X and follow parent pointers to root
— Return the root
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Union

union(x,Yy):
— Assume X and y are roots
» Else find the roots of their trees

— Assume distinct trees (else do nothing)
— Change root of one to have parent be the root of the other
» Notice no limit on branching factor
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Simple implementation

» If set elements are contiguous numbers (e.g., 1,2,...,n), use an
array of length n called up

— Starting at index 1 on slides
— Put in array index of parent, with O (or -1, etc.) for a root

 Example: 1 2 3 45 67
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 Example:
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» If set elements are not contiguous numbers, could have a
separate dictionary to map elements (keys) to numbers (values)
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Implement operations

// assumes X In range 1,n // assumes X,y are roots

int find(int x) { void union(int x, Int y){
while(Cup[x] '= 0) { uplyl] = Xx;
X = up[x]; ¥
+
return Xx;
}
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* Worst-case run-time for unton? (1)
 Worst-case run-time for f1nd? O(n)
« Worst-case run-time for m finds and n-1 unions? O(m¥*n)
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Two key optimizations

1. Improve union so it stays O(1) but makes find O(logn)
— Som finds and n-1 unionsis O(m log n + n)
— Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster
— Make m finds and n-1 unions almost O(m + n)
— Path-compression: connect directly to root during finds
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The bad case to avoid
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(5 find(1) = n steps!!
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Union-by-size

Union-by-size:
— Always point the smaller (total # of nodes) tree to the root of
the larger tree

union(1,7)
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Union-by-size

Union-by-size:
— Always point the smaller (total # of nodes) tree to the root of
the larger tree

union(1,7)
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Array implementation

Keep the size (number of nodes in a second array)
— Or have one array of objects with two fields
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Nifty trick

Actually we do not need a second array...
— Instead of storing O for a root, store negation of size
— So up value < 0 means a root

2@\ 1@45 1 23456 7
(4) up |-2|1|-1|7|7|5|-4
@
O
@\f@6 123456 7
(4) up | 7|1|-1]7|7|5]|-6
@
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The Bad case? Now a Great case...

@ @ G () union(2,1)
@ @ *** (n union(32)

& .
/@,é ** (M union(n,n-1)

@

6@% find(1) constant here
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General analysis

 Showing one worst-case example is how good is not a proof
that the worst-case has improved

 So let’s prove:
— union is still O(1) — this is “obvious”
— Ffind is now O(log n)

o Claim: If we use union-by-size, an up-tree of height h has at
least 2N nodes

— Proof by induction on h...
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Exponential number of nodes

P(h)= With union-by-size, up-tree of height h has at least 2" nodes

Proof by induction on h...

 Base case: h = 0: The up-tree has 1 node and 20=1
e Inductive case: Assume P(h) and show P(h+1)
— A height h+1 tree T has at least one height h child T1
_ T1 has at least 2" nodes by induction
— And T has at least as many nodes notin T1 than in T1
« Else union-by-size would have T
had T pointto T1, not T1 pointto T (!)

— So total number of nodes is at least 2" + 2N = 2h+1
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The key Idea

Intuition behind the proof: No one child can have more than half the
nodes
-

— = A

So, as usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes

So find is O(logn)
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The new worst case

n/2 Unions-by-size

58688888

n/4 Unions-by-size
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The new worst case (continued)

After n/2 + n/4 + ...+ 1 Unions-by-size:
e

Height grows by 1 a total of log n times find
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What about union-by-height

We could store the height of each root rather than size

« Still guarantees logarithmic worst-case find
— Proof left as an exercise if interested

« But does not work well with our next optimization

— Maintaining height becomes inefficient, but maintaining size
still easy
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Two key optimizations

1. Improve union so it stays O(1) but makes find O(log n)
— Som finds and n-1 untonsis O(m log n + n)
— Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster
— Make m finds and n-1 unions almost O(m + n)
— Path-compression: connect directly to root during finds
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Path compression

 Simple idea: As part of a find, change each encountered
node’s parent to point directly to root

— Faster future finds for everything on the path (and their
descendants)
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Pseudocode

// performs path compression

int find(r) {
// find root
Int r = 1
whileCup[r] > 0)
r = upl[r]

// compress path
1T 1==r
return r;
int old parent = up[i]

while(old parent '= r) {

upf[i] = r

1 = old parent;

old parent = up[i]
+

return r;

Example
1=3
r=3

r=6
r=5

old _parent=6

up[3]=7
1=6
old parent=5

up[6]=7
1=5
old parent=7
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So, how fast is I1t?

A single worst-case find could be O(log n)
— But only if we did a lot of worst-case unions beforehand
— And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(log n)
o total for m finds and n-1 unions is almost O(m+n)

— We won't prove it — see text if curious \@ !
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