
CSE373: Data Structures & Algorithms
Lecture 11: Implementing Union-Find

Linda Shapiro
Winter 2015

Announcements

• Homework 3 due in Friday
• Help sessions: Do we need them?

Spring 2016 2 CSE373: Data Structures & Algorithms

The plan

Last lecture:

• Disjoint sets
• The union-find ADT for disjoint sets

Today’s lecture:

• Basic implementation of the union-find ADT with “up trees”
• Optimizations that make the implementation much faster

Spring 2016 3 CSE373: Data Structures & Algorithms

Union-Find ADT

• Given an unchanging set S, create an initial partition of a set
– Typically each item in its own subset: {a}, {b}, {c}, …
– Give each subset a “name” by choosing a representative

element

• Operation find takes an element of S and returns the
representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes
one larger subset
– A different partition with one fewer set
– Affects result of subsequent find operations
– Choice of representative element up to implementation

Spring 2016 4 CSE373: Data Structures & Algorithms

Implementation – our goal

• Start with an initial partition of n subsets
– Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

• May have any number of find operations

• May have up to n-1 union operations in any order

– After n-1 union operations, every find returns same single
set

Spring 2016 5 CSE373: Data Structures & Algorithms

Up-tree data structure

• Tree with:
– No limit on branching factor
– References from children to parent

• Start with forest of 1-node trees

• Possible forest after several unions:
– Will use roots for
 set names

Spring 2016 6 CSE373: Data Structures & Algorithms

1 2 3 4 5 6 7

1

2

3

4 5

6

7

Find

find(x):
– Assume we have O(1) access to each node

• Will use an array where index i holds node i
– Start at x and follow parent pointers to root
– Return the root

Spring 2016 7 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7

find(6) = 7

Union
union(x,y):

– Assume x and y are roots
• Else find the roots of their trees

– Assume distinct trees (else do nothing)
– Change root of one to have parent be the root of the other

• Notice no limit on branching factor

Spring 2016 8 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7
union(1,7)

Simple implementation

• If set elements are contiguous numbers (e.g., 1,2,…,n), use an
array of length n called up
– Starting at index 1 on slides
– Put in array index of parent, with 0 (or -1, etc.) for a root

• Example:

• Example:

• If set elements are not contiguous numbers, could have a
separate dictionary to map elements (keys) to numbers (values)

Spring 2016 9 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7 0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

1 2 3 4 5 6 7 0 0 0 0 0 0 0
1 2 3 4 5 6 7

up

Implement operations

• Worst-case run-time for union?
• Worst-case run-time for find?
• Worst-case run-time for m finds and n-1 unions?

Spring 2016 10 CSE373: Data Structures & Algorithms

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {
 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 up[y] = x;
}

1

2

3

4 5

6

7

0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

O(1)
O(n)

O(m*n)

Two key optimizations

1. Improve union so it stays O(1) but makes find O(log n)
– So m finds and n-1 unions is O(m log n + n)
– Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster
– Make m finds and n-1 unions almost O(m + n)
– Path-compression: connect directly to root during finds

Spring 2016 11 CSE373: Data Structures & Algorithms

The bad case to avoid

Spring 2016 12 CSE373: Data Structures & Algorithms

1 2 3 n …

1

2 3 n union(2,1)

1

2

3 n
union(3,2)

union(n,n-1)

…

…

1

2

3

n

:
.

find(1) = n steps!!

Union-by-size

Union-by-size:
– Always point the smaller (total # of nodes) tree to the root of

the larger tree

Spring 2016 13 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7

union(1,7)

2 4 1

Union-by-size

Union-by-size:
– Always point the smaller (total # of nodes) tree to the root of

the larger tree

Spring 2016 14 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7
union(1,7)

6 1

Array implementation

Keep the size (number of nodes in a second array)
– Or have one array of objects with two fields

Spring 2016 15 CSE373: Data Structures & Algorithms

1

2

3 2 1
0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
up

weight
4 5

6

7 4

1

2

3 1
7 1 0

1
7 7 5 0

6
up

weight
4 5

6

7 6 1 2 3 4 5 6 7

Nifty trick

Actually we do not need a second array…
– Instead of storing 0 for a root, store negation of size
– So up value < 0 means a root

Spring 2016 16 CSE373: Data Structures & Algorithms

1

2

3 2 1

-2 1 -1 7 7 5 -4
1 2 3 4 5 6 7

up 4 5

6

7 4

1

2

3 1

7 1 -1 7 7 5 -6 up 4 5

6

7 6 1 2 3 4 5 6 7

The Bad case? Now a Great case…

Spring 2016 17 CSE373: Data Structures & Algorithms

union(2,1)

union(3,2)

union(n,n-1)

:

find(1) constant here

1 2 3 n

1

2 3 n

1

2

3

n

…

…

1

2

3 n …

General analysis

• Showing one worst-case example is now good is not a proof
that the worst-case has improved

• So let’s prove:
– union is still O(1) – this is “obvious”
– find is now O(log n)

• Claim: If we use union-by-size, an up-tree of height h has at

least 2h nodes
– Proof by induction on h…

Spring 2016 18 CSE373: Data Structures & Algorithms

Exponential number of nodes

P(h)= With union-by-size, up-tree of height h has at least 2h nodes

Proof by induction on h…

• Base case: h = 0: The up-tree has 1 node and 20= 1
• Inductive case: Assume P(h) and show P(h+1)

– A height h+1 tree T has at least one height h child T1
– T1 has at least 2h nodes by induction
– And T has at least as many nodes not in T1 than in T1

• Else union-by-size would have
 had T point to T1, not T1 point to T (!!)

– So total number of nodes is at least 2h + 2h = 2h+1
.

Spring 2016 19 CSE373: Data Structures & Algorithms

h
T1

T

The key idea

Intuition behind the proof: No one child can have more than half the
nodes

So, as usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes

So find is O(log n)

Spring 2016 20 CSE373: Data Structures & Algorithms

h
T1

T

The new worst case

Spring 2016 21 CSE373: Data Structures & Algorithms

n/2 Unions-by-size

n/4 Unions-by-size

The new worst case (continued)

Spring 2016 22 CSE373: Data Structures & Algorithms

After n/2 + n/4 + …+ 1 Unions-by-size:

Worst
find Height grows by 1 a total of log n times

log n

What about union-by-height

We could store the height of each root rather than size

• Still guarantees logarithmic worst-case find

– Proof left as an exercise if interested

• But does not work well with our next optimization
– Maintaining height becomes inefficient, but maintaining size

still easy

Spring 2016 23 CSE373: Data Structures & Algorithms

Two key optimizations

1. Improve union so it stays O(1) but makes find O(log n)
– So m finds and n-1 unions is O(m log n + n)
– Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster
– Make m finds and n-1 unions almost O(m + n)
– Path-compression: connect directly to root during finds

Spring 2016 24 CSE373: Data Structures & Algorithms

Path compression

• Simple idea: As part of a find, change each encountered
node’s parent to point directly to root
– Faster future finds for everything on the path (and their

descendants)

Spring 2016 25 CSE373: Data Structures & Algorithms

1

2

3

4 5

6

7
find(3)

8 9

10

1

2 3 4 5 6

7

8 9 10

11 12

11 12

Pseudocode

Spring 2016 26

// performs path compression
int find(i) {
 // find root
 int r = i
 while(up[r] > 0)
 r = up[r]

 // compress path
 if i==r
 return r;
 int old_parent = up[i]
 while(old_parent != r) {
 up[i] = r
 i = old_parent;
 old_parent = up[i]
 }
 return r;
}

3

5

6

7

find(3)

10

3 5 6

7

10

11 12

11 12

i=3
r=3

r=6
r=5
r=7

old_parent=6

up[3]=7
i=6
old_parent=5

up[6]=7
i=5
old_parent=7

Example

CSE373: Data Structures & Algorithms

So, how fast is it?

A single worst-case find could be O(log n)
– But only if we did a lot of worst-case unions beforehand
– And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(log n)

• total for m finds and n-1 unions is almost O(m+n)

– We won’t prove it – see text if curious

Spring 2016 27 CSE373: Data Structures & Algorithms

	CSE373: Data Structures & Algorithms�Lecture 11: Implementing Union-Find
	Announcements
	The plan
	Union-Find ADT
	Implementation – our goal
	Up-tree data structure
	Find
	Union
	Simple implementation
	Implement operations
	Two key optimizations
	The bad case to avoid
	Union-by-size
	Union-by-size
	Array implementation
	Nifty trick
	The Bad case? Now a Great case…
	General analysis
	Exponential number of nodes
	The key idea
	The new worst case
	The new worst case (continued)
	What about union-by-height
	Two key optimizations
	Path compression
	Pseudocode
	So, how fast is it?

