
CSE373: Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks/Queues

Linda Shapiro
Spring 2016

Registration

• We have 180 students registered and others who want to get in.
• If you’re thinking of dropping the course please decide soon!

Waiting students
• Please sign up on the paper waiting list after class, so I know

who you are.
• If you need the class to graduate this June, put that down, too.
• The CSE advisors and I will decide by end of Friday who gets in.

2 CSE 373: Data Structures & Algorithms Spring 2016

Welcome!

We have 10 weeks to learn fundamental data structures and
algorithms for organizing and processing information
– “Classic” data structures / algorithms
– How to rigorously analyze their efficiency
– How to decide when to use them
– Queues, dictionaries, graphs, sorting, etc.

Today in class:
• Introductions and course mechanics
• What this course is about
• Start abstract data types (ADTs), stacks, and queues

– Largely review

3 CSE 373: Data Structures & Algorithms Spring 2016

To-do list

In next 24-48 hours:
• Read the web page
• Read all course policies
• Read Chapters 3.1 (lists), 3.6 (stacks) and 3.7 (queues) of the

Weiss book
– Relevant to Homework 1, due next week

• Set up your Java environment for Homework 1

http://courses.cs.washington.edu/courses/cse373/16sp/

4 CSE 373: Data Structures & Algorithms Spring 2016

http://courses.cs.washington.edu/courses/cse373/16sp/
http://courses.cs.washington.edu/courses/cse373/16sp/

Course staff

5 CSE 373: Data Structures & Algorithms

Office hours, email, etc. on course web-page

Linda Shapiro
CSE Professor with research in computer vision.
Have taught CS&E for 40 years.
First course I ever taught was Data Structures.

Mert Saglam Ben Jones Shenqi Tang Bran Hagger Chloe Lathe Lysia Li Ezgi Mercan

Spring 2016

Communication

• Course email list: cse373a_sp16@u.washington.edu
– Students and staff already subscribed
– You must get announcements sent there
– Fairly low traffic; You don’t post there

• Course staff: cse373-staff@cs.washington.edu plus
individual emails

• Discussion board
– For appropriate discussions; TAs will monitor
– Encouraged, but won’t use for important announcements

• Anonymous feedback link
– For good and bad, but please be gentle.

6 CSE 373: Data Structures & Algorithms Spring 2016

Course meetings

• Lecture
– Materials posted, but take notes
– Ask questions, focus on key ideas (rarely coding details)

• Optional help sessions
– Help on programming/tool background
– Helpful math review and example problems
– Again, optional but helpful
– Fill out our online poll for best times

• Office hours
– Use them: please visit me for talking about course concepts

or just CSE in general.
– See the TAs for Java programming questions.

7 CSE 373: Data Structures & Algorithms Spring 2016

Course materials

• All lecture will be posted
– But they are visual aids, not always a complete description!
– If you have to miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java

• A good Java reference of your choosing
– Don’t struggle Googling for features you don’t understand

• Constantly skipping class is not good for your grade.

8 CSE 373: Data Structures & Algorithms Spring 2016

Computer Lab

• College of Arts & Sciences Instructional Computing Lab
– http://depts.washington.edu/aslab/
– Or your own machine

• Will use Java for the programming assignments

• Eclipse is recommended programming environment

9 CSE 373: Data Structures & Algorithms Spring 2016

Course Work
• 5-6 homeworks (50%)

– Most involve programming, but also written questions
– Higher-level concepts than “just code it up”
– First programming assignment due next week

• Midterm Week of May 2, in class (20%)
• Final exam: Tuesday June 7, 2:30-4:20PM (30%)

10 CSE 373: Data Structures & Algorithms Spring 2016

Collaboration and Academic Integrity

• Read the course policy very carefully
– Explains quite clearly how you can and cannot get/provide

help on homework and projects

• Always explain any unconventional action on your part
– When it happens, when you submit, not when asked

• The CSE Department and I take academic integrity extremely

seriously.

• IF YOU’RE NOT SURE, THEN ASK!

11 CSE 373: Data Structures & Algorithms Spring 2016

Some details

• You are expected to do your own work
– Exceptions (group work), if any, will be clearly announced

• Sharing solutions, doing work for, or accepting work from others

is cheating

• Referring to solutions from this or other courses from previous
quarters is cheating

• But you can learn from each other: see the policy

12 CSE 373: Data Structures & Algorithms Spring 2016

What this course will cover

• Introduction to Algorithm Analysis

• Lists, Stacks, Queues

• Trees, Hashing, Dictionaries

• Heaps, Priority Queues

• Sorting

• Disjoint Sets

• Graph Algorithms

• Advanced Data Structures and Applications

13 CSE 373: Data Structures & Algorithms Spring 2016

Goals

• Be able to make good design choices as a developer, project
manager, etc.
– Reason in terms of the general abstractions that come up in

all non-trivial software (and many non-software) systems
• Be able to justify and communicate your design decisions

You will learn the key abstractions used almost every day in just
about anything related to computing and software.

• This is not a course about Java! We use Java as a tool, but the

data structures you learn about can be implemented in any
language.

14 CSE 373: Data Structures & Algorithms Spring 2016

Let’s start!

Spring 2016 CSE 373: Data Structures & Algorithms 15

Data structures

A data structure is a (often non-obvious) way to organize
information to enable efficient computation over that information

A data structure supports certain operations, each with a:
– Meaning: what does the operation do/return
– Performance: how efficient is the operation

Examples:
– List with operations insert and delete
– Stack with operations push and pop

16 CSE 373: Data Structures & Algorithms Spring 2016

Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:

– Time vs. space
– One operation more efficient if another less efficient
– Generality vs. simplicity vs. performance

We ask ourselves questions like:

– Does this support the operations I need efficiently?
– Will it be easy to use (and reuse), implement, and debug?
– What assumptions am I making about how my software will

be used? (E.g., more lookups or more inserts?)

17 CSE 373: Data Structures & Algorithms Spring 2016

Terminology

• Abstract Data Type (ADT)
– Mathematical description of a “thing” with set of operations
– Not concerned with implementation details

• Algorithm
– A high level, language-independent description of a step-by-

step process

• Data structure
– A specific organization of data and family of algorithms for

implementing an ADT

• Implementation of a data structure
– A specific implementation in a specific language

18 CSE 373: Data Structures & Algorithms Spring 2016

Example: Stacks

• The Stack ADT supports operations:
– isEmpty: have there been same number of pops as pushes
– push: adds an item to the top of the stack
– pop: raises an error if empty, else removes and returns

most-recently pushed item not yet returned by a pop
– What else?

• A Stack data structure could use a linked-list or an array and
associated algorithms for the operations

• One implementation is in the library java.util.Stack

19 CSE 373: Data Structures & Algorithms Spring 2016

top (java peek)

Why useful

The Stack ADT is a useful abstraction because:
• It arises all the time in programming (e.g., see Weiss 3.6.3)

– Recursive function calls
– Balancing symbols in programming (parentheses)
– Evaluating postfix notation: 3 4 + 5 *
– Clever: Infix ((3+4) * 5) to postfix conversion (see text)

• We can code up a reusable library

• We can communicate in high-level terms

– “Use a stack and push numbers, popping for operators…”
– Rather than, “create an array and keep indices to the…”

20 CSE 373: Data Structures & Algorithms Spring 2016

Stack Implementations

• stack as a linked list
TOP NULL
TOP

TOP

• stack as an array

21 CSE 373: Data Structures & Algorithms Spring 2016

‘a’

‘a’ ‘b’

TOP=-1

TOP=0 ‘a’

TOP=1 ‘a’ ‘b’

The Queue ADT

• Operations
 create
 destroy
 enqueue
 dequeue
 is_empty
What else?

 front
• Just like a stack except:

– Stack: LIFO (last-in-first-out)
– Queue: FIFO (first-in-first-out)

22 CSE 373: Data Structures & Algorithms

F E D C B enqueue
 (IN)

dequeue
 (OUT) G A

Back Front

Spring 2016

Stacks vs. Queues

 Stack Queue

Spring 2016 23 CSE 373: Data Structures & Algorithms

Circular Array Queue Data Structure

24 CSE 373: Data Structures & Algorithms

// Basic idea only!
enqueue(x) {
 next = (back + 1) % size
 Q[next] = x;
 back = next
}
// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

b c d e f
Q: 0 size - 1

front back

• What if queue is empty?
– Enqueue?
 yes
– Dequeue?
 no

• What if array is full?
– Enqueue?
 no
– Dequeue
 yes

 Spring 2016

next
x

Circular Array Example (text p 94 has
 another one)

25 CSE 373: Data Structures & Algorithms

enqueue(‘g’)

o1 = dequeue()
 b
o2 = dequeue()
 c
o3 = dequeue()
 d

o4 = dequeue()
 e
o5 = dequeue()
 f
o6 = dequeue()
 g

Spring 2016

IN OUT
g

Now where
are back
and front?

front

Now
front =
back+1!

Empty Queue

• Will front = back + 1 always be true for an empty
queue?

Spring 2016 26 CSE 373: Data Structures & Algorithms

back front
 -1 0

 0 0

 4 0

‘a’

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

back front
 4 4

 4 0

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

front = (back + 1) % arraysize
 0 = 5 % 5

Circular Queue
• When we add an ‘f’ to the queue that has only the ‘e’,
 back will go around to position zero. back=(4+1)%5

Spring 2016 27 CSE 373: Data Structures & Algorithms

back front
 -1 0

 0 0

 4 0

‘a’

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

back front
 4 4

 0 4

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

‘f’ ‘b’ ‘c’ ‘d’ ‘e’

Complexity of Circular Queue Operations

Spring 2016 28 CSE 373: Data Structures & Algorithms

// Basic idea only!
enqueue(x) {
 next = (back + 1) % size
 Q[next] = x;
 back = next
}

// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

O(1)
constant

O(1)
constant

Linked List Queue Data Structure

29 CSE 373: Data Structures & Algorithms

b c d e f

front back

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}

// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

• What if queue is empty?
– Enqueue?
– Dequeue?

• Can list be full?
• How to test for empty?
• front=back=null
• What is the complexity of

the operations?
• O(1)

Spring 2016

yes
no
no

Circular Array vs. Linked List for Queues
Array:
– May waste unneeded space or

run out of space
– Space per element excellent
– Operations very simple / fast
– Constant-time access to kth

element

– For operation insertAtPosition,
must shift all later elements
– Not in Queue ADT

List:
– Always just enough space
– But more space per element
– Operations very simple / fast
– No constant-time access to kth

element

– For operation insertAtPosition
must traverse all earlier elements
– Not in Queue ADT

30 CSE 373: Data Structures & Algorithms

This is stuff you should know after being awakened
 in the dark

Spring 2016

Conclusion

• Abstract data structures allow us to define a new data type and
its operations.

• Each abstraction will have one or more implementations.

• Which implementation to use depends on the application, the
expected operations, the memory and time requirements.

• Both stacks and queues have array and linked implementations.

• We’ll look at other ordered-queue implementations later.

31 CSE 373: Data Structures & Algorithms Spring 2016

	CSE373: Data Structures and Algorithms��Lecture 1: Introduction; ADTs; Stacks/Queues
	Registration
	Welcome!
	To-do list
	Course staff
	Communication
	Course meetings
	Course materials
	Computer Lab
	Course Work
	Collaboration and Academic Integrity
	Some details
	What this course will cover
	Goals
	Let’s start!
	Data structures
	Trade-offs
	Terminology
	Example: Stacks
	Why useful
	Stack Implementations
	The Queue ADT
	Stacks vs. Queues
	Circular Array Queue Data Structure
	Circular Array Example (text p 94 has � another one)
	Empty Queue
	Circular Queue
	Complexity of Circular Queue Operations
	Linked List Queue Data Structure
	Circular Array vs. Linked List for Queues
	Conclusion

