CSE373: Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks/Queues

Linda Shapiro
Spring 2016



Registration

 We have 180 students registered and others who want to get in.
« If you're thinking of dropping the course please decide soon!

Waiting students

* Please sign up on the paper waiting list after class, so | know
who you are.

* If you need the class to graduate this June, put that down, too.
« The CSE advisors and | will decide by end of Friday who gets in.

Spring 2016 CSE 373: Data Structures & Algorithms



Welcomel

We have 10 weeks to learn fundamental data structures and
algorithms for organizing and processing information

— “Classic” data structures / algorithms

— How to rigorously analyze their efficiency
— How to decide when to use them

— Queues, dictionaries, graphs, sorting, etc.

Today In class:

* Introductions and course mechanics

 What this course is about

o Start abstract data types (ADTS), stacks, and queues
— Largely review ;‘f c

Spring 2016 CSE 373: Data Structures & Algorithms



To-do list

In next 24-48 hours:
 Read the web page
 Read all course policies

 Read Chapters 3.1 (lists), 3.6 (stacks) and 3.7 (queues) of the
Weiss book

— Relevant to Homework 1, due next week

e Set up your Java environment for Homework 1

Spring 2016 CSE 373: Data Structures & Algorithms


http://courses.cs.washington.edu/courses/cse373/16sp/
http://courses.cs.washington.edu/courses/cse373/16sp/

Course staff

Linda Shapiro

CSE Professor with research in computer vision.
Have taught CS&E for 40 years.

First course | ever taught was Data Structures.

Ezgi Mercan Mert Saglam Ben Jones Shengi Tang Bran Hagger Chloe Lathe Lysia Li

Office hours, email, etc. on course web-page

Spring 2016 CSE 373: Data Structures & Algorithms 5



Communication

Course email list: cse373a_spl6@u.washington.edu
— Students and staff already subscribed
— You must get announcements sent there
— Fairly low traffic; You don’t post there

Course staff: cse373-staff@cs.washington.edu plus
iIndividual emails

Discussion board
— For appropriate discussions; TAs will monitor
— Encouraged, but won’t use for important announcements

SRy

Anonymous feedback link
— For good and bad, but please be gentle.

Spring 2016 CSE 373: Data Structures & Algorithms



Course meetings

e Lecture
— Materials posted, but take notes
— Ask questions, focus on key ideas (rarely coding details)

* Optional help sessions
— Help on programming/tool background
— Helpful math review and example problems
— Again, optional but helpful
— Fill out our online poll for best times

o Office hours

— Use them: please visit me for talking about course concepts
or just CSE in general.

— See the TAs for Java programming questions.

Spring 2016 CSE 373: Data Structures & Algorithms



Course materials

All lecture will be posted
— But they are visual aids, not always a complete description!
— If you have to miss, find out what you missed

A good Java reference of your choosing
— Don't struggle Googling for features you don’'t understand

Constantly skipping class is not goo%or your grade.

Spring 2016 CSE 373: Data Structures & Algorithms 8



Computer Lab

» College of Arts & Sciences Instructional Computing Lab
— http://depts.washington.edu/aslab/
— Or your own machine

 Will use Java for the programming assignments

» Eclipse is recommended programming environment

Spring 2016 CSE 373: Data Structures & Algorithms



Course Work

e 5-6 homeworks (50%)
— Most involve programming, but also written questions
— Higher-level concepts than “just code it up”
— First programming assignment due next week

 Midterm Week of May 2, in class (20%)
* Final exam: Tuesday June 7, 2:30-4:20PM (30%)

Spring 2016 CSE 373: Data Structures & Algorithms

10



Collaboration and Academic Integrity

Read the course policy very carefully

— Explains quite clearly how you can and cannot get/provide
help on homework and projects

« Always explain any unconventional action on your part
— When it happens, when you submit, not when asked

« The CSE Department and | take academic integrity extremely
seriously.

 |[F YOURE NOT SURE, THEN ASK!

Spring 2016 CSE 373: Data Structures & Algorithms 11



Some detalls

You are expected to do your own work
— Exceptions (group work), if any, will be clearly announced

« Sharing solutions, doing work for, or accepting work from others
Is cheating

* Referring to solutions from this or other courses from previous
guarters is cheating

 Butyou can learn from each other: see the policy

Spring 2016 CSE 373: Data Structures & Algorithms 12



What this course will cover

Introduction to Algorithm Analysis
e Lists, Stacks, Queues

* Trees, Hashing, Dictionaries
 Heaps, Priority Queues

e Sorting

* Disjoint Sets

o Graph Algorithms

 Advanced Data Structures and Applications

Spring 2016 CSE 373: Data Structures & Algorithms

13



Goals

 Be able to make good design choices as a developer, project
manager, etc.

— Reason in terms of the general abstractions that come up in
all non-trivial software (and many non-software) systems

 Be able to justify and communicate your design decisions

You will learn the key abstractions used almost every day in just
about anything related to computing and software.

 This is not a course about Java! We use Java as a tool, but the
data structures you learn about can be implemented in any
language.

Spring 2016 CSE 373: Data Structures & Algorithms 14



Let’s start!

Spring 2016

CSE 373: Data Structures & Algorithms

15



Data structures

A data structure is a (often non-obvious) way to organize
iInformation to enable efficient computation over that information

A data structure supports certain operations, each with a:
— Meaning: what does the operation do/return
— Performance: how efficient is the operation

Examples:
— List with operations 1nsert and delete
— Stack with operations push and pop

Spring 2016 CSE 373: Data Structures & Algorithms 16



Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:
— Time vs. space
— One operation more efficient if another less efficient
— Generality vs. simplicity vs. performance

We ask ourselves questions like:
— Does this support the operations | need efficiently?
— Will it be easy to use (and reuse), implement, and debug?

— What assumptions am | making about how my software will
be used? (E.g., more lookups or more inserts?)

Spring 2016 CSE 373: Data Structures & Algorithms 17



Terminology

Abstract Data Type (ADT)
— Mathematical description of a “thing” with set of operations
— Not concerned with implementation details

Algorithm

— A high level, language-independent description of a step-by-
step process

Data structure

— A specific organization of data and family of algorithms for
Implementing an ADT

Implementation of a data structure
— A specific implementation in a specific language

Spring 2016 CSE 373: Data Structures & Algorithms 18



Example: Stacks

« The Stack ADT supports operations:
— ISEmpty: have there been same number of pops as pushes

— push: adds an item to the top of the stack
— pop: raises an error if empty, else removes and returns
most-recently pushed item not yet returned by a pop

— What else?  top (java peek)

A Stack data structure could use a linked-list or an array and
associated algorithms for the operations

 One implementation is in the library Java.util.Stack

Spring 2016 CSE 373: Data Structures & Algorithms

19



Why useful

The Stack ADT Is a useful abstraction because:
e It arises all the time in programming (e.g., see Weiss 3.6.3)
— Recursive function calls
— Balancing symbols in programming (parentheses)
— Evaluating postfix notation: 34 +5*
— Clever: Infix ((3+4) * 5) to postfix conversion (see text)

 \We can code up a reusable library
 We can communicate in high-level terms

— “Use a stack and push numbers, popping for operators...”
— Rather than, “create an array and keep indices to the...”

Spring 2016 CSE 373: Data Structures & Algorithms 20



Stack Implementations

 stack as a linked list

TOP

NULL

TOP

TOP

a

‘b’

e stack as an array

TOP=-1
TOP=0
TOP=1

Spring 2016

(b!

CSE 373: Data Structures & Algorithms

21



The Queue ADT

* QOperations
create

destroy

engueue g §UCUeE ) e pDCB
dequeue (IN)

dequeue

IS _empty T
What else? Back
front
« Just like a stack except.
— Stack: LIFO (last-in-first-out)
— Queue: FIFO (first-in-first-out)

Spring 2016 CSE 373: Data Structures & Algorithms

T

(OUT)

Front

22



Stacks vs. Queues

Spring 2016 CSE 373: Data Structures & Algorithms 23



Circular Array Queue Data Structure
Q: O e size -1

bcdef%
J bac 'ﬁgext

fron

// Basic i1dea only!

° I i )
enqueue(x) { What if queue is empty”~

Q[next] = Xx; yes
back = next — Dequeue?

AU

// Basic idea only! no

dequeue() {  What if array is full?
X = Q[front]; — Enqueue?
front = (front + 1) % size; no

¥ yes

Spring 2016 CSE 373: Data Structures & Algorithms 24




Circular Array Example (text p 94 has
another one)

OUT <€ |N

Q: O size - 1
bjc|d|e|f]|(
N
frontT/ backT/ front
enqueue(‘qg’)
0l = dequeue() 04 = dequeue() Now where
b e are back
02 = dequeue( ) 05 = dequeue( ) and front?
C f
03 = dequeue( ) 06 = dequeue() Now
d g front =
back+1!

Spring 2016

CSE 373: Data Structures & Algorithms

25



Empty Queue

« Will front = back + 1 always be true for an empty

gueue”?
back front
-1 O
0
‘a1
4 0

‘a1 ‘b’ ‘C, ‘d’ ‘e1

back front
4 4

‘e1
4 0

front = (back + 1) % arraysize
0 = 5 % 5

Spring 2016 CSE 373: Data Structures & Algorithms 26



Circular Queue

« When we add an ‘f’ to the queue that has only the ‘e’,

back will go around to position zero. back=(4+1)%5

back front back front
-1 0 4 4
‘e1
0 0 4
‘a1 ‘f’ ‘ei
4 0

‘a1 ‘b’ ‘C, ‘d’ ‘e1

Spring 2016 CSE 373: Data Structures & Algorithms

27




Complexity of Circular Queue Operations

// Basic i1dea only!

enqueue(x) {
next = (back + 1) % size O(1)
Q[ next] = Xx; constant

back = next

}

// Basic i1dea only!
dequeue() {

X = Q[front]; O(1)
front = (front + 1) % size; constant
return Xx;

+

Spring 2016 CSE 373: Data Structures & Algorithms

28



Linked

_Ist Queue Data Structure

b > C

>

d

>

e

o f

f

front

f
back

// Basic i1dea only!
enqueue(x) {

back.next = new Node(x);

back = back.next;

}

// Basic i1dea only!

dequeue() {
X = front.i1tem;

front = front.next;

return Xx;

}

Spring 2016

What if queue is empty?
— Enqueue? yes
— Dequeue? NO
Can list be full? NO
How to test for empty?
front=back=null

What is the complexity of
the operations?

o(1)

CSE 373: Data Structures & Algorithms 29



Array:

Circular Array vs. Linked List for Queues

May waste unneeded space or —
run out of space _

Space per element excellent _
Operations very simple / fast _

Constant-time access to k"
element

For operation insertAtPosition, —
must shift all later elements

— Not in Queue ADT

This is stuff you should know after being awakened

in the dark

Spring 2016 CSE 373: Data Structures & Algorithms

List;

Always just enough space
But more space per element
Operations very simple / fast

No constant-time access to ki
element

For operation insertAtPosition
must traverse all earlier elements

— Not in Queue ADT




Conclusion

Abstract data structures allow us to define a new data type and
Its operations.

« Each abstraction will have one or more implementations.

 Which implementation to use depends on the application, the
expected operations, the memory and time requirements.

» Both stacks and queues have array and linked implementations.

 We'll look at other ordered-gueue implementations later.

Spring 2016 CSE 373: Data Structures & Algorithms 31



	CSE373: Data Structures and Algorithms��Lecture 1: Introduction; ADTs; Stacks/Queues
	Registration
	Welcome!
	To-do list
	Course staff
	Communication
	Course meetings
	Course materials
	Computer Lab
	Course Work
	Collaboration and Academic Integrity
	Some details
	What this course will cover
	Goals
	Let’s start!
	Data structures
	Trade-offs
	Terminology
	Example: Stacks
	Why useful
	Stack Implementations
	The Queue ADT
	Stacks vs. Queues
	Circular Array Queue Data Structure
	Circular Array Example  (text p 94 has �                                         another one)
	Empty Queue
	Circular Queue
	Complexity of Circular Queue Operations
	Linked List Queue Data Structure
	Circular Array vs. Linked List for Queues
	Conclusion

