CSE 373 Data Structures Spring 2016 Practice Problems

Problem 1

In this problem you will practice insertion into binary search trees and AVL trees.
A Show how to insert 4, 6, 9, 2, 3 and 7 into an initially empty binary search tree. (Show each step.)

B Show how to delete the root from the binary search tree you created. Use the successor node to replace the root. (Show all work.)

C Show how to insert 4, 6, 9, 2, 3 and 7 into an initially empty AVL tree. (Show each step, including rebalancing.)

Problem 2

In this problem you will practice insertion and deletion in binary heaps (default min heap).

A Show how to insert $10,12,14,6$ and 1 into an initially empty binary heap. Insert each value, one at a time (not with buildHeap), and show each of the 5 steps as separate trees (pictorially with nodes and edges). For only the step of adding the 1 , show the initial array representation and each step of the percolate up until the 1 is in the right place.

B Show how to build a binary heap with 10, 12, 14, 6 and 1 using buildHeap algorithm. Show each step as a separate tree (pictorially with nodes and edges).

C Show the results of a deleteMin operation on the heap above. Show the initial array representation and each step of the percolate down until the operation is complete.

Problem 3

In this problem you will practice working with the union-find algorithms and up-tree data structure. You are given 6 individual sets numbered 1 through 6 . Show the results of the following sequence of instructions (show each step as a tree):
union $(1,2)$, union $(3,6)$, union $(4,3)$, union $(4,5)$, union $(1,4)$
when unions are:

A Performed arbitrarily by making the second argument a child of the first argument.

B Performed by size.

Problem 4

Show how to insert the following keys into a B+-tree. The tree is a $2-3$ tree, meaning that each internal node has 1-2 keys and up to 3 children. Each leaf node should also have at most 2 keys for this problem.

Keys to insert in this order:
$\begin{array}{lllll}82 & 96 & 53 & 46 & 91\end{array}$

Show all 5 steps in construction of the B+-tree. And note that when a leaf has to split, because it would contain 3 keys, move ONE key to the left leaf and TWO to the right to obey the algorithm I gave in class. If you do it the other way, it will be wrong, even though it is reasonable.

