CS 373 SPRING 2016: HW 5
Graphs and Shortest Paths

Assigned: 5/18/2016, Due: 6/1/2016

Background

For this assignment, you will develop a graph representation and use it to implement Dijk-
stra’s algorithm for finding shortest paths. Unlike previous assignments, you will use some
classes in the Java standard libraries, gaining valuable experience reading documentation
and understanding APIs.

You may use anything in the Java standard collections (or anything else in the standard
library) for any part of this assignment. Take a look at the Java API as you are thinking
about your solutions. At the very least, look at the Collection and List inter-
faces to see what operations are allowable on them and what classes implement those
interfaces.

For this assignment, you may work with one partner. If you do so, the two of you will
turn in only one assignment and, except in extraordinary situations, receive the same grade
(and, if applicable, have the same number of late days applied). Working with a partner
is optional; it is fine to complete the assignment by yourself. If you choose to work with
a partner, you may divide the work however you wish, but both partners must understand
and be responsible for everything that is submitted. Beyond working with a partner, all the
usual collaboration policies apply.

JFK
IAD
46
IAD
JFK
49
ATL
IAD
143
IAD
ATL
JFK 125
IAD ORD
ATL JFK
ORD 189

(a) (b) ()

Figure 1: (a) An example graph, (b) vertex file format (each vertex in a line) for the graph
in (a), (c) edge file format (3 lines for each edge source, destination, cost) for the graph in

(a).

Given Material

Six java files and two text files are provided for this assignment.

e Vertex.java: Vertex class. You may add methods and/or variables if you wish. Do
not modify existing methods.

e Edge.java: Edge class. You may add methods and/or variables if you wish. Do not
modify existing methods.

e Path.java: Class with two fields for returning the result of a shortest-path computa-
tion. Do not modify.

e Graph.java: Graph interface. Do not modify.

e MyGraph.java: Implementation of the Graph interface: you will need to fill in code
here.

e FindPaths.java: A client of the graph interface: Needs small additions.

e vertex.txt and edge.txt: An example graph in the correct input format.

Part 1: Graph Implementation

In this part of the assignment, you will implement a graph representation that you will use
in Part 2. The structures covered in the lectures (adjacency list and matrix) work efficiently
when you can access a vertex in constant time. Note that vertices have string labels and it
is not trivial to put them in an array and access them in constant-time. In order to utilize
constant-time access (like an array or matrix), consider using hash tables (check out the
classes in the Map interface in Java) instead of arrays in your implementation of the graph.
Everything you would do with an array, you can do with a hash table.

Add code to the provided-but-incomplete MyGraph class to implement the Graph in-
terface. Do not change the arguments to the constructor of MyGraph and do not add other
constructors. Otherwise, you are free to add things to the Vertex, Edge, and MyGraph
classes, but please do not remove code already there and do not modify Graph. java. You
may also create other classes if you find it helpful.

As always, your code should be correct (implement a graph) and efficient (in partic-
ular, good asymptotic complexity for the requested operations), so choose a good graph
representation for computing shortest paths in Part 2.

We will also grade your graph representation on how well it protects its abstraction from
bad clients. In particular this means:

e The constructor should check that the arguments make sense and throw an appropriate
exception otherwise. You can define your own exceptions if you see fit. A couple of
possible places to check for exceptions:

— The edges should involve only vertices with labels that are in the vertices of the
graph. That is, there should be no edge from or to a vertex labeled A if there is
no vertex with label A.

— Edge weights should not be negative.

— Do not throw an exception if the collection of vertices has repeats in it: If two ver-
tices in the collection have the same label, just ignore the second one encountered
as redundant information.

— Do throw an exception if the collection of edges has the same directed edge more
than once with a different weight. Remember in a directed graph an edge from
A to B is not the same as an edge from B to A. Do not throw an exception if an
edge appears redundantly with the same weight; just ignore the redundant edge
information.

e [t should not be possible for clients of a graph to break the abstraction by adding
edges, making illegal weights, etc.

Other useful information:

e The Vertex and Edge classes have already defined an appropriate equals method
(they also define hashCode appropriately). If you need to decide if two Vertex
objects are “the same”, you probably want to use the equals method and not ==.

e You will likely want some sort of Map in your program so you can easily and efficiently
look up information stored about some Vertex. (This would be much more efficient
than, for example, having a Vertex [] and iterating through it every time you needed
to look for a particular Vertex.)

e As you are debugging your program, you may find it useful to print out your data
structures. There are toString methods for Edge and Vertex. Remember that
things like ArrayLists and Sets can also be printed.

Part 2: Dijkstra’s Shortest Path Algorithm

In this part of the assignment, you will use your graph from Part 1 to compute shortest
paths. The MyGraph class has a method shortestPath you should implement to return
the lowest-cost path from its first argument to its second argument. Return a Path object
as follows:

e [f there is no path, return null.

e [f the start and end vertex are equal, return a path containing one vertex and a cost
of 0.

e Otherwise, the path will contain at least two vertices — the start and end vertices and
any other vertices along the lowest-cost path. The vertices should be in the order they
appear on the path.

Because you know the graph contains no negative-weight edges, Dijkstra’s algorithm is
what you should implement. Additional implementation notes:

e One convenient way to represent infinity is with Integer .MAX VALUE.

e Using a priority queue is above-and-beyond. You are not required to use a priority
queue for this assignment. Feel free to use any structure you would like to keep track
of distances and then search it to find the one with the smallest distance that is also
unknown.

e You definitely need to be careful to use equals instead of == to compare Vertex
objects. The way the FindPaths class works (see below) is to create multiple Vertex
objects for the same graph vertex as it reads input files. You may want to refer to
your old notes on the equals method from CSE143. Remember that equals lets us
compare values (e.g. do two Vertex objects have the same label) as opposed to just
checking if two things refer to the exact same object.

The program in FindPaths. java is mostly provided to you. When the program begins
execution, it reads two data files and creates a representation of the graph. See Figure 1
for an example. It then prints out the graph’s vertices and edges, which can be helpful
for debugging to help ensure that the graph has been read and stored properly. Once the
graph has been built, the program loops repeatedly and allows the user to ask shortest-path
questions by entering two vertex names. The part you need to add is to take these vertex
names, call shortestPath, and print out the result. Your output should be as follows:

e If the start and end vertices are X and Y, first print a line
Shortest path from X to Y:

e [f there is no path from the start to end vertex, print exactly one more line
does not exist

e Else print exactly two more lines. On the first additional line, print the path with
vertices separated by spaces. For example, you might print
X Foo Bar Baz Y
On the second additional line, print the cost of the path (i.e., just a single number).

The FindPaths code expects two input files in a particular format. The names of the
files are passed as command-line arguments. The provided files vertex.txt and edge.txt have
the right format to serve as one (small) example data set where the vertices are 3-letter
airport codes. Here is the file format:

e The file of vertices (the first argument to the program) has one line per vertex and
each line contains a string with the name of a vertex.

e The file of edges (the second argument to the program) has three lines per directed
edge (so lines 1-3 describe the first edge, lines 4-6 describe the second edge, etc.) The
first line gives the source vertex. The second line gives the destination vertex. The
third line is a string of digits that give the weight of the edge (this line should be
converted to a number to be stored in the graph).

4

Note data files represent directed graphs, so if there is an edge from A to B there may
or may not be an edge from B to A. Moreover, if there is an edge from A to B and an edge
from B to A, the edges may or may not have the same weight.

Write-Up Questions

Create a README. txt file and answer the following questions:

1. Describe the worst-case asymptotic running times of your methods adjacentvertices,
edgeCost, and shortestPath. In your answers, use |E| for the number of edges
and |V for the number of vertices. Explain and justify your answers.

2. Describe how you tested your code.

3. If you worked with a partner, describe how you worked together. If you divided up
the tasks, explain how you did so. If you worked on parts together, describe the actual
process. Discuss how much time you worked together and how you spent that time
(planning, coding, testing, ...).

4. If you did any extra credit, describe what you did.

Extra Credit

e Find an interesting real-world data set and convert it into the right format for your
program. Describe in your write-up questions what the data is and what a shortest
path means. Turn in your data set in the right format as two additional files.

e Improve your implementation of Dijkstra’s algorithm by using a priority queue. Note
that for Dijkstra’s algorithm, we need to find items in the priority queue and update
their priorities (the decreaseKey operation). We would like to find items in constant
time (and then logarithmic time for changing the priority). There are various ways to
do this, including keeping a back-pointer from each vertex to its entry in the priority
queue. Note: If you implement this above and beyond, you are not required to also
implement Dijkstra’s without a priority queue. You may submit the priority queue
version as your only submission, but be sure to indicate in your write-up that you did
this.

e Extend MyGraph with a method for computing minimum spanning trees using
one of the efficient algorithms discussed in class. Also write a driver program that
reads in a graph and prints a minimum spanning tree. This driver will be much like
FindPaths, but make a separate file and do not prompt the user for vertices or have
a loop — just print one minimum spanning tree. Explain in your write-up the format
of what you print.

Grading

This assignment is worth 45 points and up to 15 points can be awarded towards extra credit.
If you work with a partner, only one partner should submit the files. Be sure to list
both partners’ names in your files. You will turn in everything electronically to the Dropbox.
This should include all your code files, including the files provided to you (but you do not
need to turn in vertex.txt and edge.txt). This should also include a file with your write-up,
README.txt; do not forget to turn in your write-up.

e Correctness: 33 points

— MyGraph(v,e): 3 points

— vertices(): 3 points

— edges(): 3 points

— adjacentVertices(v): 3 points
— edgeCost(a,b): 3 points

— shortestPath(a,b): 13 points
— FindPaths.java : 5 points

e Readability: 5 points
e Report: 7 points
e Extra Credit: 15 points

— Interesting dataset: 3 points
— Dijkstra with priority queue: 4 points

— Minimum spanning tree: 8 points

