CSE 373 Data Structures SP16 HW2

Problem 1 (5 pts)

$2 / N$
37
\sqrt{N}
N
$N \log \log N$
$N \log N, N \log \left(N^{2}\right)$
$N \log ^{2} N$
$N^{1.5}$
N^{2}
$N^{2} \log N$
N^{3}
$2^{N / 2}$
2^{N}

Problem 2 (12 pts)

	Big-Oh	$\mathrm{n}=20$	$\mathrm{n}=200$	$\mathrm{n}=2000$
1	$O(n)$			
2	$O\left(n^{2}\right)$			
3	$O\left(n^{3}\right)$		machine dependent	
4	$O\left(n^{2}\right)$			
5	$O\left(n^{5}\right)$		too long	
6	$O\left(n^{4}\right)$			

The discussion should make reference to how the amount of time needed to run the fragment grows roughly at the rate predicted by the Big-Oh analysis.

Problem 3 (3 pts)

$f(n)=O(g(n))$ iff there exist positive constants C and n_{0} such that $f(n) \leq C g(n)$ for all $n \geq n_{0}$. Any combination of C, n_{0}, and $g(n)$ that matches this definition suffices, however we aim to minimize $g(n)$.

$$
\begin{aligned}
f(n) & =6 n^{3}+30 n+403 \\
& \leq 6 n^{3}+30 n^{3}+403 n^{3} \\
& =439 n^{3}
\end{aligned}
$$

Hence, $f(x) \leq C n^{3}$ for $C=439$ and $n \geq 1$ (here we have $n_{0}=1$), and so $f(x)$ is $O\left(n^{3}\right)$

Problem 4 (5 pts)

Basis: If size $=0$, then v is empty and hence cannot contain val. The program correctly outputs 0 .

Inductive Hypothesis: Assume the program provides the correct result for all arrays of size $\leq k$.

Inductive Step: We must show that the program will provide the correct result for all arrays of size $=k+1$. Consider any array v of size $=k+1$. The program checks if val is the $k+1$ element of v . If it is, the program will correctly return 1 . If it is not, the program will return the result of a search of the array composed of the first k values of v. Since we did not find our value in the $k+1$ position of v , if it is to be found anywhere it will be found among the first k elements. Since we have assumed by the inductive hypothesis that the program will return the correct result for all arrays of size $\leq k$, we can assume that whatever is returned by this search of the first k elements of v will be correct. Thus the program provides the correct result for v .

Since v was any array of size $=k+1$, we can assume the program provides the correct output for all arrays of this size. Since k is similarly arbitrary, we can assume that our program provides the correct output for all inputs.

