CSE 373 Data Structures SP16 HW2

Problem 1 (5 pts)

2/N 37 \sqrt{N} N $N \log \log N$ $N \log \log N$ $N \log^2 N$ $N^{1.5}$ N^2 $N^2 \log N$ N^3 $2^{N/2}$ 2^N

Problem 2 (12 pts)

	Big-Oh	n=20	n=200	n=2000
1	O(n)			
2	$O(n^2)$			
3	$O(n^3)$	machine dependent		
4	$O(n^2)$			
5	$O(n^5)$		too long	
6	$O(n^4)$			

The discussion should make reference to how the amount of time needed to run the fragment grows roughly at the rate predicted by the Big-Oh analysis.

Problem 3 (3 pts)

f(n) = O(g(n)) iff there exist positive constants C and n_0 such that $f(n) \leq Cg(n)$ for all $n \geq n_0$. Any combination of C, n_0 , and g(n) that matches this definition suffices, however we aim to minimize g(n).

$$f(n) = 6n^3 + 30n + 403$$
$$\leq 6n^3 + 30n^3 + 403n^3$$
$$= 439n^3$$

Hence, $f(x) \leq Cn^3$ for C = 439 and $n \geq 1$ (here we have $n_0 = 1$), and so f(x) is $O(n^3)$

Problem 4 (5 pts)

- Basis: If size = 0, then v is empty and hence cannot contain val. The program correctly outputs 0.
- Inductive Hypothesis: Assume the program provides the correct result for all arrays of size $\leq k$.
- Inductive Step: We must show that the program will provide the correct result for all arrays of size = k + 1. Consider any array v of size = k + 1. The program checks if val is the k + 1 element of v. If it is, the program will correctly return 1. If it is not, the program will return the result of a search of the array composed of the first k values of v. Since we did not find our value in the k + 1 position of v, if it is to be found anywhere it will be found among the first k elements. Since we have assumed by the inductive hypothesis that the program will return the correct result for all arrays of $size \leq k$, we can assume that whatever is returned by this search of the first k elements of v will be correct. Thus the program provides the correct result for v.

Since **v** was any array of size = k + 1, we can assume the program provides the correct output for *all* arrays of this size. Since k is similarly arbitrary, we can assume that our program provides the correct output for all inputs.