Topological Sort

Problem: Given a DAG \(G = (V, E) \), output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer
- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
- Do some DAGs have exactly 1 answer?
 - Yes, including all lists
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution
- ...

Example

Node: 126 142 143 374 373 417 410 413 415 XYZ
Removed?
In-degree: 0 0 2 1 1 1 1 1 1 3

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side
2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \((v, u) \) in \(E \)), decrement the in-degree of \(u \)
Notice

- Needed a vertex with in-degree 0 to start
 - Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
 - Can be more than one correct answer, by definition, depending on the graph

Running time?

```python
labelEachVertexWithItsInDegree()
for ctr in range(numVertices):
    v = findNewVertexOfDegreeZero()
    put v next in output
    for each w adjacent to v:
        w.indegree -= 1
```

- What is the worst-case running time?
 - Initialization $O(V+E)$ (assuming adjacency list)
 - Sum of all find-new-vertex $O(V^2)$ (because each $O(V)$)
 - Sum of all decrements $O(E)$ (assuming adjacency list)
 - So total is $O(V^2)$ – not good for a sparse graph!
Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both \(O(1)\)

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) \(v = \text{dequeue()}\)
 b) Output \(v\) and remove it from the graph
 c) For each vertex \(u\) adjacent to \(v\) (i.e. \(u\) such that \((v,u)\) in \(E\)), decrement the in-degree of \(u\), if new degree is 0, enqueue it

Running time?

- What is the worst-case running time?
 - Initialization: \(O(|V|+|E|)\) (assuming adjacency list)
 - Sum of all enqueues and dequeues: \(O(|V|)\)
 - Sum of all decrements: \(O(|E|)\) (assuming adjacency list)
 - So total is \(O(|E|+|V|)\) – much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v\), find all nodes reachable from \(v\) (i.e., there exists a path from \(v\))
- Possibly "do something" for each node
- Examples: print to output, set a field, etc.

- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:
- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Running Time and Options

- Assuming \(\text{add}\) and \(\text{remove}\) are \(O(1)\), entire traversal is \(O(|E|)\)
 - Use an adjacency list representation

- The order we traverse depends entirely on \(\text{add}\) and \(\text{remove}\)
 - Popular choice: a stack "depth-first graph search" "DFS"
 - Popular choice: a queue "breadth-first graph search" "BFS"

- DFS and BFS are "big ideas" in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: explore areas closer to the start node first

Abstract Idea

Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see"

\[
\text{DFS}(\text{nodeValue}):
\begin{align*}
&\text{Mark and process }\text{nodeValue}.
&\text{For each node }u\text{ adjacent to }\text{nodeValue}:
&\quad\text{if }u\text{ is not marked}:
&\quad\quad\text{DFS}(u)
\end{align*}
\]

- \(A\, B\, D\, E\, C\, F\, G\, H\)
- Exactly what we called a "pre-order traversal" for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

Autumn 2016 CSE373: Data Structures & Algorithms 19

Autumn 2016 CSE373: Data Structures & Algorithms 20

Autumn 2016 CSE373: Data Structures & Algorithms 21

Autumn 2016 CSE373: Data Structures & Algorithms 22

Autumn 2016 CSE373: Data Structures & Algorithms 23

Autumn 2016 CSE373: Data Structures & Algorithms 24

4
Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

 \[\text{DFS}(\text{startNode}):\]

 Mark and process startNode.

 For each node \(u\) adjacent to startNode:

 if \(u\) is not marked:

 \[\text{DFS}(u)\]

 \[A\]
 \[B\]
 \[C\]
 \[D\]
 \[E\]
 \[F\]
 \[G\]
 \[H\]

 This is recursive DFS

- **A B D E C F G H**
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: Another Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

 \[\text{DFS2}(\text{startNode}):\]

 Let \(s = \text{Stack}()\). \(s.\text{push}(\text{startNode})\)

 Mark startNode as visited.

 while \(s\) is not empty:

 \[\text{next} = s.\text{pop}()\] # and “process”

 For each node \(u\) adjacent to next:

 if \(u\) is not marked:

 mark \(u\); \(s.\text{push}(u)\)

 \[A\]
 \[B\]
 \[C\]
 \[D\]
 \[E\]
 \[F\]
 \[H\]
 \[G\]

 This is iterative DFS

- **A C F H G B E D**
- A different but perfectly fine traversal

Comparison

- Breadth-first always finds shortest paths, i.e., “optimal solutions”
 - Better for “what is the shortest path from \(x\) to \(y\)”

- But depth-first can use less space in finding a path
 - If longest path in the graph is \(p\) and highest out-degree is \(d\)
 - then DFS stack never has more than \(d \cdot p\) elements
 - But a queue for BFS may hold \(O(|V|)\) nodes

- A third approach:
 - Iterative deepening (IDFS):
 - Try DFS but disallow recursion more than \(K\) levels deep
 - If that fails, increment \(K\) and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.

Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

 \[\text{BFS}(\text{startNode}):\]

 Let \(q = \text{Queue}()\). \(q.\text{enqueue}(\text{startNode})\)

 Mark startNode as visited.

 while \(q\) is not empty:

 \[\text{next} = q.\text{dequeue}()\] # and “process”

 For each node \(u\) adjacent to next:

 if \(u\) is not marked:

 mark \(u\) and \(q.\text{enqueue}(u)\)

 \[A\]
 \[B\]
 \[C\]
 \[D\]
 \[E\]
 \[F\]
 \[H\]
 \[G\]

 - **A B C D E F G H**
 - A “level-order” traversal

Saving the Path

- Our graph traversals can answer the reachability question:
 - “Is there a path from node \(x\) to node \(y\)?”

- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it’s possible to get there!

- How to do it:
 - Instead of just “marking” a node, store the previous node along the path (when processing \(u\) causes us to add \(v\) to the search, set \(v.\text{path}\) field to \(u\))
 - When you reach the goal, follow \(\text{path}\) fields back to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Single source shortest paths

- Done: BFS to find the minimum path length from \(v \) to \(u \) in \(O(|E|+|V|) \)
- Actually, can find the minimum path length from \(v \) to every node
 - Still \(O(|E|+|V|) \)
 - No faster way for a “distinguished” destination in the worst-case
- Now: Weighted graphs
 - Given a weighted graph and node \(v \), find the minimum-cost path from \(v \) to every node
- As before, asymptotically no harder than for one destination

Applications

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management

Not as easy as BFS

Why BFS won’t work: Shortest path may not have the fewest edges
- Annoying when this happens with costs of flights

We will assume there are no negative weights
- Problem is ill-defined if there are negative-cost cycles
- Today’s algorithm is wrong if edges can be negative
 - There are other, slower (but not terrible) algorithms

Dijkstra’s Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the “founders” of computer science; this is just one of his many contributions
 - Many people have a favorite Dijkstra story, even if they never met him

Dijkstra’s Algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a “best distance so far”
 - A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
 - A series of steps
 - At each one the locally optimal choice is made