Hash Tables: Review

- Aim for constant-time (i.e., $O(1)$) find, insert, and delete
 - "On average" under some reasonable assumptions
- A hash table is an array of some fixed size
 - But growable as we’ll see

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
- Ideas?

Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list
(a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and $\text{TableSize} = 10$
Separate Chaining
Chaining:
All keys that map to the same
table location are kept in a list
(a.k.a. a "chain" or "bucket")
As easy as it sounds
Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10

Thoughts on chaining
• Worst-case time for find?
 – Linear
 – But only with really bad luck or bad hash function
 – So not worth avoiding (e.g., with balanced trees at each
 bucket)
• Beyond asymptotic complexity, some "data-structure
 engineering" may be warranted
 – Linked list vs. array vs. tree
 – Move-to-front upon access
 – Maybe leave room for 1 element (or 2?) in the table itself, to
 optimize constant factors for the common case
• A time-space trade-off…

More rigorous chaining analysis
Definition: The load factor, \(\lambda \), of a hash table is
\[
\lambda = \frac{N}{\text{TableSize}}
\]
Under chaining, the average number of elements per bucket is ___
More rigorous chaining analysis

Definition: The load factor, \(\lambda \), of a hash table is

\[
\lambda = \frac{N}{\text{TableSize}} \quad \text{← number of elements}
\]

Under chaining, the average number of elements per bucket is \(\lambda \)

ie. The average list has length \(\lambda \)

So if some inserts are followed by random finds, then on average:

- Each unsuccessful find compares against \(\lambda \) items
- Each successful find compares against \(\lambda / 2 \) items

So we like to keep \(\lambda \) fairly low (e.g., 1 or 1.5 or 2) for chaining

Alternative: No lists; Use empty space in the table

- Another simple idea: If \(h(\text{key}) \) is already full,
 - try \((h(\text{key}) + 1) \mod \text{TableSize}\). If full,
 - try \((h(\text{key}) + 2) \mod \text{TableSize}\). If full,
 - try \((h(\text{key}) + 3) \mod \text{TableSize}\). If full...
- Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

- Another simple idea: If \(h(\text{key}) \) is already full,
 - try \((h(\text{key}) + 1) \mod \text{TableSize}\). If full,
 - try \((h(\text{key}) + 2) \mod \text{TableSize}\). If full,
 - try \((h(\text{key}) + 3) \mod \text{TableSize}\). If full...
- Example: insert 38, 19, 8, 109, 10

- Example: insert 38, 19, 8, 109, 10
Alternative: Use empty space in the table

Another simple idea: If \(h(key) \) is already full,
- try \((h(key) + 1) \mod \text{TableSize} \). If full,
- try \((h(key) + 2) \mod \text{TableSize} \). If full,
- try \((h(key) + 3) \mod \text{TableSize} \). If full...

Example: insert 38, 19, 8, 109, 10

Probing hash tables

Trying the next spot is called probing (also called open addressing)
- We just did linear probing
 - \(i^{th} \) probe was \(h(key) + i \mod \text{TableSize} \)
 - In general have some probe function \(f \) and use \(h(key) + f(i) \mod \text{TableSize} \)

Open addressing does poorly with high load factor \(\lambda \)
- So want larger tables
- Too many probes means no more \(O(1) \)

Other operations

insert finds an open table position using a probe function

What about find?
- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about delete?
- Must use "lazy" deletion. Why?
 - Marker indicates "no data here, but don't stop probing"
 - Note: delete with chaining is plain-old list-remove

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (which is a good thing)

Tends to produce clusters, which lead to long probing sequences
- Called primary clustering
- Saw this starting in our example

[R. Sedgewick]
Analysis of Linear Probing

- Trivial fact: For any $\lambda < 1$, linear probing will find an empty slot
 - It is “safe” in this sense: no infinite loop unless table is full
- Non-trivial facts we won’t prove:
 - Average # of probes given λ (in the limit as TableSize $\rightarrow \infty$)
 - Unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)$
 - Successful search: $\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)$
- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

Quadratic probing

- We can avoid primary clustering by changing the probe function
 $(h(key) + f(i)) \mod \text{TableSize}$
- A common technique is quadratic probing:
 $f(i) = i^2$
 - So probe sequence is:
 - 0th probe: $h(key) \mod \text{TableSize}$
 - 1st probe: $(h(key) + 1) \mod \text{TableSize}$
 - 2nd probe: $(h(key) + 4) \mod \text{TableSize}$
 - 3rd probe: $(h(key) + 9) \mod \text{TableSize}$
 - ...
 - ith probe: $(h(key) + i^2) \mod \text{TableSize}$
- Intuition: Probes quickly “leave the neighborhood”

In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes “large table” but point remains)
- By comparison, chaining performance is linear in λ and has no trouble with $2x$ leading to性能

Quadratic Probing Example

TableSize=10
Insert: 89
18
49
58
79
Quadratic Probing Example

TableSize=10
Insert:
 0 49
 1 89
 2 18
 3 49
 4 58
 5 79
 6
 7
 8 18
 9 89

Another Quadratic Probing Example

TableSize = 7
Insert:
 0
 1
 2 76 (76 % 7 = 6)
 3 40 (40 % 7 = 5)
 4 48 (48 % 7 = 6)
 5 5 (5 % 7 = 5)
 6 55 (55 % 7 = 6)
 7 47 (47 % 7 = 5)
Another Quadratic Probing Example

<table>
<thead>
<tr>
<th>TableSize = 7</th>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

Another Quadratic Probing Example

<table>
<thead>
<tr>
<th>TableSize = 7</th>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

Another Quadratic Probing Example

<table>
<thead>
<tr>
<th>TableSize = 7</th>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

Another Quadratic Probing Example

<table>
<thead>
<tr>
<th>TableSize = 7</th>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

Another Quadratic Probing Example

<table>
<thead>
<tr>
<th>TableSize = 7</th>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

From Bad News to Good News

- **Bad news:**
 - Quadratic probing can cycle through the same full indices, never terminating despite table not being full
- **Good news:**
 - If TableSize is prime and \(\lambda < \frac{1}{2} \), then quadratic probing will find an empty slot in at most TableSize/2 probes
 - So: If you keep \(\lambda < \frac{1}{2} \) and TableSize is prime, no need to detect cycles

Clustering reconsidered

- **Bad news:**
 - Quadratic probing does not suffer from primary clustering:
 - no problem with keys initially hashing to the same neighborhood
- But it’s no help if keys initially hash to the same index
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...
Double hashing

Idea:
- Given two good hash functions h and g, it is very unlikely that for some key, $h(key) == g(key)$
- So make the probe function $f(i) = i*g(key)$

Probe sequence:
- 0^{th} probe: $h(key) \mod \text{TableSize}$
- 1^{st} probe: $(h(key) + g(key)) \mod \text{TableSize}$
- 2^{nd} probe: $(h(key) + 2*g(key)) \mod \text{TableSize}$
- 3^{rd} probe: $(h(key) + 3*g(key)) \mod \text{TableSize}$
- ...
- i^{th} probe: $(h(key) + i*g(key)) \mod \text{TableSize}$

Detail: Make sure $g(key)$ cannot be 0

Double-hashing analysis

- Intuition: Because each probe is "jumping" by $g(key)$ each time, we "leave the neighborhood" and "go different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
 - It is known that this cannot happen in at least one case:
 - $h(key) = key \mod p$
 - $g(key) = q - (key \mod q)$
 - $2 < q < p$
 - p and q are prime

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything
- With chaining, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?
 - Consider average or max size of non-empty chains?
- For probing, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except that won’t be prime!
 - So go about twice-as-big
 - Can have a list of prime numbers in your code since you won’t grow more than 20-30 times

Summary

- Hashing gives us approximately O(1) behavior for both insert and find.
- Collisions are what ruin it.
- There are several different collision strategies.
 - Chaining just uses linked lists pointed to by the hash table bins.
 - Probing uses various methods for computing the next index to try if the first one is full.
 - Rehashing makes a new, bigger table.
- If the table is kept reasonably empty (small load factor), and the hash function works well, we will get the kind of behavior we want.