Mathematical induction - Review

- Let \((\forall n \geq c) T(n) \) be a theorem that we want to prove. It includes a constant \(c \) and a natural parameter \(n \).
- Proving that \(T \) holds for all natural values of \(n \) greater than or equal to \(c \) is done by proving following two conditions:
 1. \(T \) holds for \(n = c \)
 2. For every \(n > c \) if \(T \) holds for \(n-1 \), then \(T \) holds for \(n \)

Terminology:
- \(T(c) \) is the Base Case
- \(T(n-1) \) is the Induction Hypothesis
- \(T(n-1) \implies T(n) \) is the Induction Step
- \((\forall n \geq c) T(n) \) is the Theorem being proved.

Mathematical induction – Example1

- Theorem: The sum of the first \(n \) natural numbers is \(n \cdot (n+1)/2 \)
 \((\forall n \geq 1) T(n) \iff (\forall n \geq 1) \sum_{k=1}^{n} k = n \cdot (n+1)/2 \)
- Proof: by induction on \(n \)
 1. Base case: If \(n = 1 \), \(s(1) = 1 = 1 \cdot (1+1)/2 \)
 2. Inductive step: We assume that \(s(n) = n \cdot (n+1)/2 \), and prove that this implies \(s(n+1) = (n+1) \cdot (n+2)/2 \), for all \(n \geq 1 \)

\[
s(n+1) = s(n) + (n+1) = n \cdot (n+1)/2 + (n+1) = (n+1) \cdot (n+2)/2
\]

Making postage is the problem of selecting a group of stamps whose total value matches a given amount.
Mathematical induction – Example 2

• Theorem: Every amount of postage that is at least 12 cents can be made from 4-cent and 5-cent stamps.
• Proof: by induction on the amount of postage
• Postage \(p = m \cdot 4 + n \cdot 5 \)
• Base cases:
 – Postage(12) = 3 \cdot 4 + 0 \cdot 5
 – Postage(13) = 2 \cdot 4 + 1 \cdot 5
 – Postage(14) = 1 \cdot 4 + 2 \cdot 5
 – Postage(15) = 0 \cdot 4 + 3 \cdot 5

Inductive step:
We assume that we can construct postage for every value from 12 up to \(k \). We need to show how to construct \(k + 1 \) cents of postage. Since we have proved base cases up to 15 cents, we can assume that \(k + 1 \geq 16 \).

Since \(k+1 \geq 16 \), \((k+1)−4 \geq 12\). So by the inductive hypothesis, we can construct postage for \((k + 1) − 4\) cents: \((k + 1) − 4 = m \cdot 4 + n \cdot 5\).

But then \(k + 1 = (m + 1) \cdot 4 + n \cdot 5\). So we can construct \(k + 1 \) cents of postage using \((m+1)\) 4-cent stamps and \(n \) 5-cent stamps.

Correctness of algorithms

• Induction can be used for proving the correctness of repetitive algorithms:
 – Iterative algorithms:
 • Loop invariants
 – Induction hypothesis = loop invariant = relationships between the variables during loop execution
 – Recursive algorithms
 • Direct induction
 – Induction hypothesis = assumption that each recursive call itself is correct (often a case for applying strong induction)

Example: Correctness proof for Decimal to Binary Conversion

Algorithm Decimal_to_Binary

Input: \(n \), a positive integer
Output: \(b \), an array of bits, the bin repr. of \(n \), starting with the least significant bits

\[
t := n; \\
k := 0; \\
while \(t > 0 \) do \\
 \quad b[k] := t \mod 2; \\
 \quad t := t \div 2; \\
 \quad k := k + 1; \\
end
\]

It is a repetitive (iterative) algorithm; thus we use loop invariants and proof by induction.

Example: Loop invariant for Decimal to Binary Conversion

Algorithm Decimal_to_Binary

Input: \(n \), a positive integer
Output: \(b \), an array of bits, the bin repr. of \(n \)

\[
t := n; \quad k := 0; \quad \text{while } (t > 0) \text{ do } \\
 \quad b[k] := t \mod 2; \quad \text{t := t \div 2;} \\
 \quad k := k + 1; \quad \text{end}
\]

At step \(k \), \(b \) holds the \(k \) least significant bits of \(n \), and the value of \(t \), when shifted by \(k \), corresponds to the rest of the bits.
Example: Loop invariant for Decimal to Binary Conversion

Algorithm Decimal_to_Binary

Input: n, a positive integer
Output: b, an array of bits, the bin repr. of n

\[
t := n;
k := 0;
\text{while } (t>0) \text{ do}
\begin{align*}
 b[k] &:= t \mod 2; \\
 t &:= t \div 2; \\
 k &:= k+1;
\end{align*}
\text{end}
\]

Loop invariant: If m is the integer represented by array \(b[0..k-1]\), then \(n = t \cdot 2^k + m\).

Example: Proving the correctness of the conversion algorithm

- Induction hypothesis: If m is the integer represented by array \(b[0..k-1]\), then \(n = t \cdot 2^k + m\).
- To prove the correctness of the algorithm, we have to prove the 3 conditions:
 1. **Initialization:** The hypothesis is true at the beginning of the loop.
 2. **Maintenance:** If hypothesis is true for step \(k\), then it will be true for step \(k+1\).
 3. **Termination:** When the loop terminates, the hypothesis implies the correctness of the algorithm.

Example: Proving the correctness of the conversion algorithm (1)

1. **The hypothesis is true at the beginning of the loop:**

 \(k=0\), \(t=n\), \(m=0\) (array is empty)

 \(n = n \cdot 2^0 + 0\)

Example: Proving the correctness of the conversion algorithm (2)

2. **If hypothesis is true for step \(k\), then it will be true for step \(k+1\).**

 At the start of step \(k\) assume that \(n = t \cdot 2^k + m\), calculate the values at the end of this step.

 - If \(t\) is even then: \(t \mod 2 = 0\), \(m\) unchanged,
 \[
 t = t / 2, \quad k = k+1 \implies \left(t / 2 \right) \cdot 2^{k+1} + m = t \cdot 2^k + m = n
 \]
 - If \(t\) is odd then: \(t \mod 2 = 1\), \(b[k+1]\) is set to 1, \(m' = m + 2^k\),
 \[
 t = (t-1)/2, \quad k = k+1 \implies (t-1)/2 \cdot 2^{k+1} + m + 2^k = t \cdot 2^k + m = n
 \]

Example: Proving the correctness of the conversion algorithm (3)

3. **When the loop terminates, the hypothesis implies the correctness of the algorithm.**

 The loop terminates when \(t=0\) implies

 \(n = 0 \cdot 2^k + m = m\)

 \(n = m\). \text{(proved)}
Bibliography

- Weiss, Ch. 1 section on induction.
- Goodrich and Tamassia: Induction and loop invariants; see, e.g., http://www.cs.mun.ca/~kol/courses/2711-w09/Induction.pdf
- Erickson, J. Proof by Induction. Available at: http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf