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Announcements 

• HW05 will be out soon on hash tables. Evan is 
improving it. 
 

• I am grading exams. 

Data Structures & Algorithms 



B-Trees Introduction 

• B-Trees (and B+-Trees) are used 
heavily in databases. 

• They are NOT binary trees. 
• They are multi-way search trees that 

are kept somewhat shallow to limit disk 
accesses.  
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Example (Just the Idea) 
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Relational Databases 
• A relational database is conceptually a set of 2D 

tables. 
• The columns of a table are called attributes; they are 

the keys.  
• Each table has at least one primary key by which it 

can be accessed rapidly. 
• The rows are the different data records, each having 

a unique primary key. 
• B+ trees are one very common implementation for 

these tables. In B+ trees, the data are stored only in 
the leaf nodes. 
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Creating a table in SQL 
create table Company  
 (cname varchar(20) primary key,  
 country varchar(20),  
 no_employees int,  
 for_profit char(1));  
  
insert into Company values ('GizmoWorks', 'USA', 20000,'y');  
insert into Company values ('Canon', 'Japan', 50000,'y');  
insert into Company values ('Hitachi', 'Japan', 30000,'y');  
insert into Company values('Charity', 'Canada', 500,'n');  
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Company Table 
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cname  country    no_employees for_profit 
GizmoWorks  USA         20000           y  
Canon  Japan         50000        y  
Hitachi  Japan         30000        y  
Charity  Canada             500           n  

primary key 



Queries 

• select * from Company; 
 

• select cname from Company 
   where no_employees = 500; 
 
• select cname, country from Company 
   where no_employees > 20000 AND  
              no_employees < 50000; 
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create table Company  
 (cname varchar(20) primary key,  
 country varchar(20),  
 no_employees int,  
 for_profit char(1));  
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B+-Trees are multi-way search trees commonly used in database 
systems or other applications where data is stored externally on 
disks and keeping the tree shallow is important. 

A B+-Tree of order M has the following properties: 
   1. The root is either a leaf or has between 2 and M children. 
   2. All nonleaf nodes (except the root) have between M/2  
 and M children. 
   3. All leaves are at the same depth.  

All data records are stored at the leaves. 
Internal nodes have “keys” guiding to the leaves. 
Leaves store between L/2 and L data records, 
where L can be equal to M (default) or can be different. 

B+-Trees 
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B+-Tree Details 

Each (non-leaf) internal node of a B-tree has: 
› Between M/2 and M children. 
› up to M-1 keys k1 <  k2 < ... < kM-1 

kM-1 . . . . . .  ki-1 ki k1 
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Properties of B+-Trees 

Children of each internal node are "between" the keys in that node. 
Suppose subtree Ti is the ith child of the node: 

all keys in Ti must be between keys ki-1 and ki 

i.e. ki-1 ≤ Ti < ki 
ki-1 is the smallest key in Ti  
All keys in first subtree T1 < k1 
All keys in last subtree TM ≥ kM-1 

k 1 

T T i i 

. . . . . .  k k i-1 k k i i 

T T M T T 1 1 

k k M-1 

. . .  . . .  
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DS.B.13 
B-Tree Nonleaf Node in More Detail 

P[1]   K[1]  . . .  K[i-1]   P[i-1]   K[i]  . . . K[q-1]   P[q] 

y z 

x < K[1] K[i-1]≤y<K[i]  K[q-1] ≤ z 

• The Ks are keys 
 

• The Ps are pointers to subtrees. 

x 

    |  4  |    |  8  |     

   
 x<4     4≤x<8       8 ≤x  
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DS.B.14 
Detailed Leaf Node Structure (B+ Tree) 

K[1]  R[1]  . . .  K[q-1]  R[q-1]  Next 

• The Ks are keys (assume unique). 
 

• The Rs are pointers to records with those keys. 
 

• The Next link points to the next leaf in key order (B+-tree). 
75      89      95           103      115          

95  Jones  Mark  19  4 data record 
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 Searching in B-trees 

13:- 

6:11 

3  4 6  7  8 11 12 13  14 17 18 

17:- 

• B-tree of order 3: also known as 2-3 tree (2 to 3 
children per node) 
 

 
 
 
 
 

• Examples: Search for 9, 14, 12 

- means empty slot 
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DS.B.17 
Searching a B-Tree T for a Key Value K 
(from a database book) 

Find(ElementType K, Btree T) { 
B = T; 
while (B is not a leaf) 
   { 
   find the Pi in node B that points to 
      the proper subtree that K will be in; 
 
   B = Pi; 
   } 
 
/* Now we’re at a leaf */ 
if key K is the jth key in  leaf B, 
   use the jth record pointer to find the  
   associated record; 
else /* K is not in leaf B */ report failure; 
} 

How would you search 
 for a key in a node? 
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Inserting into B-Trees 
The Idea 

• Insert X: Do a Find on X and find appropriate leaf node 
› If leaf node is not full, fill in empty slot with X 

• E.g. Insert 5 
› If leaf node is full, split leaf node and adjust parents up to root 

node 
• E.g. Insert 9 13:- 

6:11 

3  4 6  7  8 11 12 13  14 17 18 

17:- Assume M=L=3, 
so (6 7 8) is full. 
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Inserting into B-Trees 
The Idea 

13:- 

6:11 

3  4 6  7  8 11 12 13  14 17 18 

17:- 

6 7    8 9 

? 
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DS.B.18 
Inserting a New Key in a B-Tree of Order M (and L=M) 
from database book 

Insert(ElementType K, Btree B)  { 
 find the leaf node LB of B in which K belongs; 
 if notfull(LB) insert K into LB; 
 else       
     { 
     split LB into two nodes LB and LB2 with  
      j = (M+1)/2 keys in LB and the rest in LB2; 
     
 
 
 
       if ( IsNull(Parent(LB)) ) 
           CreateNewRoot(LB, K[j+1], LB2); 
       else 
           InsertInternal(Parent(LB), K[j+1], LB2);     
       } } 

K[1]  R[1]  . . .  K[j]  R[j]   K[j+1] R[j+1] . . . K[M+1]  R[M+1]  

LB LB2 
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DS.B.19 

Inserting a (Key,Ptr) Pair into an Internal Node 

If the node is not full, insert them in the proper  
   place and return. 
 
If the node is already full (M pointers, M-1 keys),  
   find the place for the new pair and split 
   the adjusted (Key,Ptr) sequence into two 
   internal nodes with  
 
   j = (M+1)/2 pointers and j-1 keys in the first, 
 
   the next key  is inserted in the node’s parent, 
 
   and the rest in the second of the new pair. 
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Inserting into B-Trees 
The Idea 

13:- 

6:11 

3  4 6  7  8 11 12 13  14 17 18 

17:- 

6 7    8 9 

?8 
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Inserting into B-Trees 
The Idea 

13:- 

6:11 

3  4 11 12 13  14 17 18 

17:- 

6 7 8 9 

6:- 11:- 

8? 
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Inserting into B-Trees 
The Idea 

8:13 

6:11 

3  4 11 12 13  14 17 18 

17:- 

6 7 8 9 

6:- 11:- 
<6 

≥6, <8 

<11 

≥11, <13 
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Example of Insertions into a 
B+ tree with M=3, L=2 

Insertion Sequence: 9, 5, 1, 7, 3,12 

9 5 | 9 

1|  |  5 | 9 | 

 | 5 |  1 2 3  | 5 |  | 7 |  

1|  |  7 | 9 | 5 |  |  

4 

 | 5 |  | 7 |  

1| 3 |  5 |  |  7 | 9 | 

5 

1| 3 |  5 |  |  7 |   |   9 | 12 |  

 | 5 |   | 9 |  

 | 7 |  
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Deleting From B-Trees 
(NOT THE FULL ALGORITHM) 

• Delete X : Do a find and remove from leaf 
› Leaf underflows – borrow from a neighbor 

• E.g. 11 
› Leaf underflows and can’t borrow – merge nodes, delete 

parent 
• E.g. 17 13:- 

6:11 

3  4 6  7  8 11 12 13  14 17 18 

17:- 
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Run Time Analysis of B-Tree 
Operations 

• For a B-Tree of order M 
› Each internal node has up to M-1 keys to search 
› Each internal node has between M/2 and M children 
› Depth of B-Tree storing N items is O(log M/2 N) 

• Find: Run time is: 
› O(log M) to binary search which branch to take at each 

node. But M is small compared to N. 
› Total time to find an item is O(depth*log M) = O(log N) 
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DS.B.22 

How Do We Select the Order M? 

-   In internal memory, small orders, like 3 or 4 
     are fine. 
 
-   On disk, we have to worry about the number 
     of disk accesses to search the index and get 
     to the proper leaf. 

Rule: Choose  the largest M so that an internal 
node can fit into one physical block of the disk. 

This leads to typical M’s between 32 and 256 
And keeps the trees as shallow as possible. 
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Summary of B+-Trees 
• Problem with Binary Search Trees: Must keep tree balanced to 

allow  fast access to stored items 
 

• Multi-way search trees (e.g. B-Trees and B+-Trees):  
› More than two children per node allows shallow trees; all 

leaves are at the same depth. 
› Keeping tree balanced at all times. 
› Excellent for indexes in database systems. 
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