
CSE373: Data Structures & Algorithms
Lecture 15: B-Trees

Linda Shapiro
Winter 2015

Winter 2015 2

Announcements

• HW05 will be out soon on hash tables. Evan is
improving it.

• I am grading exams.

Data Structures & Algorithms

B-Trees Introduction

• B-Trees (and B+-Trees) are used
heavily in databases.

• They are NOT binary trees.
• They are multi-way search trees that

are kept somewhat shallow to limit disk
accesses.

Winter 2015 Data Structures & Algorithms 3

Example (Just the Idea)

Winter 2015 Data Structures & Algorithms 4

Relational Databases
• A relational database is conceptually a set of 2D

tables.
• The columns of a table are called attributes; they are

the keys.
• Each table has at least one primary key by which it

can be accessed rapidly.
• The rows are the different data records, each having

a unique primary key.
• B+ trees are one very common implementation for

these tables. In B+ trees, the data are stored only in
the leaf nodes.

Winter 2015 Data Structures & Algorithms 5

Creating a table in SQL
create table Company
 (cname varchar(20) primary key,
 country varchar(20),
 no_employees int,
 for_profit char(1));

insert into Company values ('GizmoWorks', 'USA', 20000,'y');
insert into Company values ('Canon', 'Japan', 50000,'y');
insert into Company values ('Hitachi', 'Japan', 30000,'y');
insert into Company values('Charity', 'Canada', 500,'n');

Winter 2015 Data Structures & Algorithms 6

Company Table

Winter 2015 Data Structures & Algorithms 7

cname country no_employees for_profit
GizmoWorks USA 20000 y
Canon Japan 50000 y
Hitachi Japan 30000 y
Charity Canada 500 n

primary key

Queries

• select * from Company;

• select cname from Company
 where no_employees = 500;

• select cname, country from Company
 where no_employees > 20000 AND
 no_employees < 50000;
Winter 2015 Data Structures & Algorithms 8

create table Company
 (cname varchar(20) primary key,
 country varchar(20),
 no_employees int,
 for_profit char(1));

Winter 2015 Data Structures & Algorithms 9

B+-Trees are multi-way search trees commonly used in database
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B+-Tree of order M has the following properties:
 1. The root is either a leaf or has between 2 and M children.
 2. All nonleaf nodes (except the root) have between M/2
 and M children.
 3. All leaves are at the same depth.

All data records are stored at the leaves.
Internal nodes have “keys” guiding to the leaves.
Leaves store between L/2 and L data records,
where L can be equal to M (default) or can be different.

B+-Trees

Winter 2015 Data Structures & Algorithms 10

B+-Tree Details

Each (non-leaf) internal node of a B-tree has:
› Between M/2 and M children.
› up to M-1 keys k1 < k2 < ... < kM-1

kM-1 ki-1 ki k1

Winter 2015 Data Structures & Algorithms 11

Properties of B+-Trees

Children of each internal node are "between" the keys in that node.
Suppose subtree Ti is the ith child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 ≤ Ti < ki
ki-1 is the smallest key in Ti
All keys in first subtree T1 < k1
All keys in last subtree TM ≥ kM-1

k 1

T T i i

. k k i-1 k k i i

T T M T T 1 1

k k M-1

.

Winter 2015 Data Structures & Algorithms 12

DS.B.13
B-Tree Nonleaf Node in More Detail

P[1] K[1] . . . K[i-1] P[i-1] K[i] . . . K[q-1] P[q]

y z

x < K[1] K[i-1]≤y<K[i] K[q-1] ≤ z

• The Ks are keys

• The Ps are pointers to subtrees.

x

 | 4 | | 8 |

 x<4 4≤x<8 8 ≤x

Winter 2015 Data Structures & Algorithms 13

DS.B.14
Detailed Leaf Node Structure (B+ Tree)

K[1] R[1] . . . K[q-1] R[q-1] Next

• The Ks are keys (assume unique).

• The Rs are pointers to records with those keys.

• The Next link points to the next leaf in key order (B+-tree).
75 89 95 103 115

95 Jones Mark 19 4 data record

Winter 2015 Data Structures & Algorithms 14

 Searching in B-trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3
children per node)

• Examples: Search for 9, 14, 12

- means empty slot

Winter 2015 Data Structures & Algorithms 15

DS.B.17
Searching a B-Tree T for a Key Value K
(from a database book)

Find(ElementType K, Btree T) {
B = T;
while (B is not a leaf)
 {
 find the Pi in node B that points to
 the proper subtree that K will be in;

 B = Pi;
 }

/* Now we’re at a leaf */
if key K is the jth key in leaf B,
 use the jth record pointer to find the
 associated record;
else /* K is not in leaf B */ report failure;
}

How would you search
 for a key in a node?

Winter 2015 Data Structures & Algorithms 16

Inserting into B-Trees
The Idea

• Insert X: Do a Find on X and find appropriate leaf node
› If leaf node is not full, fill in empty slot with X

• E.g. Insert 5
› If leaf node is full, split leaf node and adjust parents up to root

node
• E.g. Insert 9 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:- Assume M=L=3,
so (6 7 8) is full.

Winter 2015 Data Structures & Algorithms 17

Inserting into B-Trees
The Idea

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

6 7 8 9

?

Winter 2015 Data Structures & Algorithms 18

DS.B.18
Inserting a New Key in a B-Tree of Order M (and L=M)
from database book

Insert(ElementType K, Btree B) {
 find the leaf node LB of B in which K belongs;
 if notfull(LB) insert K into LB;
 else
 {
 split LB into two nodes LB and LB2 with
 j = (M+1)/2 keys in LB and the rest in LB2;

 if (IsNull(Parent(LB)))
 CreateNewRoot(LB, K[j+1], LB2);
 else
 InsertInternal(Parent(LB), K[j+1], LB2);
 } }

K[1] R[1] . . . K[j] R[j] K[j+1] R[j+1] . . . K[M+1] R[M+1]

LB LB2

Winter 2015 Data Structures & Algorithms 19

DS.B.19

Inserting a (Key,Ptr) Pair into an Internal Node

If the node is not full, insert them in the proper
 place and return.

If the node is already full (M pointers, M-1 keys),
 find the place for the new pair and split
 the adjusted (Key,Ptr) sequence into two
 internal nodes with

 j = (M+1)/2 pointers and j-1 keys in the first,

 the next key is inserted in the node’s parent,

 and the rest in the second of the new pair.

Winter 2015 Data Structures & Algorithms 20

Inserting into B-Trees
The Idea

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

6 7 8 9

?8

Winter 2015 Data Structures & Algorithms 21

Inserting into B-Trees
The Idea

13:-

6:11

3 4 11 12 13 14 17 18

17:-

6 7 8 9

6:- 11:-

8?

Winter 2015 Data Structures & Algorithms 22

Inserting into B-Trees
The Idea

8:13

6:11

3 4 11 12 13 14 17 18

17:-

6 7 8 9

6:- 11:-
<6

≥6, <8

<11

≥11, <13

Winter 2015 Data Structures & Algorithms 23

Example of Insertions into a
B+ tree with M=3, L=2

Insertion Sequence: 9, 5, 1, 7, 3,12

9 5 | 9

1| | 5 | 9 |

 | 5 | 1 2 3 | 5 | | 7 |

1| | 7 | 9 | 5 | |

4

 | 5 | | 7 |

1| 3 | 5 | | 7 | 9 |

5

1| 3 | 5 | | 7 | | 9 | 12 |

 | 5 | | 9 |

 | 7 |

Winter 2015 Data Structures & Algorithms 24

Deleting From B-Trees
(NOT THE FULL ALGORITHM)

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11
› Leaf underflows and can’t borrow – merge nodes, delete

parent
• E.g. 17 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

Winter 2015 Data Structures & Algorithms 25

Run Time Analysis of B-Tree
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to search
› Each internal node has between M/2 and M children
› Depth of B-Tree storing N items is O(log M/2 N)

• Find: Run time is:
› O(log M) to binary search which branch to take at each

node. But M is small compared to N.
› Total time to find an item is O(depth*log M) = O(log N)

Winter 2015 Data Structures & Algorithms 26

DS.B.22

How Do We Select the Order M?

- In internal memory, small orders, like 3 or 4
 are fine.

- On disk, we have to worry about the number
 of disk accesses to search the index and get
 to the proper leaf.

Rule: Choose the largest M so that an internal
node can fit into one physical block of the disk.

This leads to typical M’s between 32 and 256
And keeps the trees as shallow as possible.

Winter 2015 Data Structures & Algorithms 27

Summary of B+-Trees
• Problem with Binary Search Trees: Must keep tree balanced to

allow fast access to stored items

• Multi-way search trees (e.g. B-Trees and B+-Trees):
› More than two children per node allows shallow trees; all

leaves are at the same depth.
› Keeping tree balanced at all times.
› Excellent for indexes in database systems.

	CSE373: Data Structures & Algorithms�Lecture 15: B-Trees
	Announcements
	B-Trees Introduction
	Example (Just the Idea)
	Relational Databases
	Creating a table in SQL
	Company Table
	Queries
	Slide Number 9
	B+-Tree Details
	Properties of B+-Trees
	Slide Number 12
	Slide Number 13
	 Searching in B-trees
	Slide Number 15
	Inserting into B-Trees�The Idea
	Inserting into B-Trees�The Idea
	Slide Number 18
	Slide Number 19
	Inserting into B-Trees�The Idea
	Inserting into B-Trees�The Idea
	Inserting into B-Trees�The Idea
	Example of Insertions into a�B+ tree with M=3, L=2
	Deleting From B-Trees�(NOT THE FULL ALGORITHM)
	Run Time Analysis of B-Tree Operations
	Slide Number 26
	Summary of B+-Trees

