
Section # 11 CSE 373 July 30, 2015

Topological Sort

1. Idea: Given a DAG, output all vertices in an order so that no vertex appears before another vertex that
points to it.

2. Algorithm Idea:
Keep track of the in-degree of each node.
Use a queue to ensure the proper ordering of nodes (from least to greatest in-degree)
Every time an in-degree is 0, enqueue it.
Every time a node is processed, decrement its adjacents in-degree.

3. Example:

4. Running time:
Initialization: O(|V |+ |E|) (assuming adjacency list)
Sum of all enqueues and dequeues: O(|V |)
Sum of all decrements: O(|E|) (assuming adjacency list)

So total is O(|E|+ |V |) - much better for sparse graphs

Section # 11 CSE 373 July 30, 2015

Graph Traversals

1. Depth-First Search:
Recursively explore one part before going back to the other parts not yet explored
Typically use a stack to keep track of which nodes to process next (non-recursive)

2. DFS(Node start) {
mark and process start;

for each node u adjacent to start
if u is not marked

DFS(u)
}

3. Breadth-First Search:
explore areas closer to the start node first
Typically use a queue to keep track of which nodes to process next

4. BFS(Node start) {
initialize queue q and enqueue start;

mark start as visited
while(q is not empty) {
next = q.dequeue() // and process
for each node u adjacent to next

if(u is not marked)
mark u and enqueue onto q } }

5. Comparison:
Breadth-first finds shortest paths
Better for what is the shortest path from x to y

But depth-first can use less space in finding a path

A third approach:
Iterative deepening (IDFS):
Try DFS but disallow recursion more than K levels deep
If that fails, increment K and start the entire search over
Like BFS, finds shortest paths. Like DFS, less space.

