CSE373: Data Structures & Algorithms

Lecture 8: Priority Queues and Binary Heaps

Lauren Milne
Summer 2015

Announcements

« Homework 2 due today

 Homework 3 out today (due July 22" ©
« Midterm next Friday

« Today
— AVL Tree Review
— Priority Queues
— Min Heaps

The general right-left case

The general right-left case

Before we added the node, the tree was balanced. . .

If V (and U) were of height h, would the tree be balanced here?

The general right-left case

The actual value of h can be anything, we only care about the
relative heights of the subtrees...

These two trees are equivalent, we just redefined h

The general right-left case
h+3

Insert, summarized

e |nsertasinaBST

« Check back up path for imbalance, which will be 1 of 4 cases:
— Node’s left-left grandchild is too tall
— Node’s left-right grandchild is too tall
— Node’s right-left grandchild is too tall
— Node’s right-right grandchild is too tall

« Only one case occurs because tree was balanced before insert

» After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion

— So all ancestors are now balanced

AVL Trees efficiency

* Worst-case complexity of £ind: O(log n)
— Tree is balanced

« Worst-case complexity of insert: O(log n)
— Tree starts balanced
— A rotation is O(1) and there’s an O(1og n) path to root
— Tree ends balanced

« Worst-case complexity of buildTree: O(n 1log n)

Takes some more rotation action to handle delete...

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always
balanced

2. Height balancing adds no more than a constant factor to the speed
of insert and delete

Arguments against AVL trees:

Difficult to program & debug [but done once in a library!]

More space for height field

Asymptotically faster but rebalancing takes a little time

If amortized (later, | promise) logarithmic time is enough, use splay
trees (also in the text)

b=

Done with AVL Trees (....phew!)
next up...

Priority Queues ADT
(Homework 3 ©)

10

A new ADT: Priority Queue

« A priority queue holds compare-able data

— Like dictionaries, we need to compare items
« Given x and y, is x less than, equal to, or greater than y
« Meaning of the ordering can depend on your data

— Integers are comparable, so will use them in examples
« But the priority queue ADT is much more general
» Typically two fields, the priority and the data

11

Priorities

Each item has a “priority”

— In our examples, the lesser item is the one with the greater priority
— So “priority 1”7 is more important than “priority 4”

— (Just a convention, think “first is best”)

Operations:

— insert insert
—_—

— deleteMin

— is empty

Key property: deleteMin returns and deletes the item with greatest
priority (lowest priority value)

— Can resolve ties arbitrarily

12

Example

insert x7 with priority 5

insert x2 with priority 3

a = deleteMin // x2

insert x3 with priority 2

insert x4 with priority 6 _nsert deleteMin,
C = deleteMin // x3

d =deleteMin // x1

 Analogy: insert is like enqueue, deleteMin is like dequeue
— But the whole point is to use priorities instead of FIFO

13

Applications

Like all good ADTs, the priority queue arises often

* Run multiple programs in the operating system
— “critical” before “interactive” before “compute-intensive”

« Treat hospital patients in order of severity (or triage)
« Forward network packets in order of urgency
« Select most frequent symbols for data compression

« Sort (first insert all, then repeatedly deleteMin)
— Much like Homework 1 uses a stack to implement reverse

14

Finding a good data structure

 Will show an efficient, non-obvious data structure for this ADT
— But first let’'s analyze some “obvious” ideas for n data items

data insert algorithm / time

unsorted array add at end O(1)
unsorted linked list add at front O(1)
sorted circular array search / shift O(n)
sorted linked list put in right place O(n)

binary search tree put in right place O(n)

deleteMin algorithm / time

search O(n)
search O(n)
move front O(1)

remove at front O(1)
leftmost O(n)

AVL tree put in right place O(log n) leftmost O(log n)

15

Our data structure

A binary min-heap (or just binary heap or just heap) has:
« Structure property: A complete binary tree

« Heap property: The priority of every (non-root) node is less
important than the priority of its parent

— Not a binary search tree

notaheap (¢
(5 A
> @

So:
* Where is the highest-priority item?
« What is the height of a heap with n items?

16

Operations: basic idea

e findMin: return root.data
e deleteMin:
1. answer = root.data

2. Move right-most node in last
row to root to restore
structure property

3. “Percolate down” to restore
heap property

e insert: Overall strategy:
1. Put new node in next position ~ * FPreserve structure property
on bottom row to restore » Break and restore heap
structure property property

2. “Percolate up” to restore
heap property
17

DeleteMin

Delete (and later return) value at root node

18

* We now have a “hole” at the root

DeleteMin: Keep the Structure Property

— Replace it with another node
« \Want to keep structure property

Pick the last node on the bottom row of the
tree and move it to the “hole”

19

DeleteMin: Restore the Heap Property

Percolate down:

« Compare priority of item with children

* |If priority is less important, swap with the most important child and
repeat

* Done if both children are less important than the item or we've
reached a leaf node

What is the run time?

20

DeleteMin: Run Time Analysis

* Run time is O(height of heap)
A heap is a complete binary tree

« Height of a complete binary tree of n nodes?
— height = | 1og,(n) |

* Run time of deleteMin is O(log n)

21

Insert

« Add a value to the tree

« Afterwards, structure and heap
properties must still be correct

22

Insert: Maintain the Structure Property

There is only one valid tree shape after @

we add one more node @)

So put our new data there and then
focus on restoring the heap property

23

Insert: Restore the heap property

Percolate up:

* Put new data in new location

 |f parent is less important, swap with parent, and continue
* Done if parent is more important than item or reached root

What is the running time?
Like deleteMin, worst-case time proportional to tree height: O(log n)

24

Binary Heap

* QOperations
— O(log n) insert
— O(log n) deleteMin worst-case
— Very good constant factors
— Ifitems arrive in random order, then insert is O(1) on average
» Because approx. 75% of nodes in bottom two rows

25

Summary

* Priority Queue ADT:

— insert comparable object,
— deleteMin

insert

« Binary heap data structure:
— Complete binary tree
— Each node has less important
priority value than its parent

« insert and deleteMin operations = O(height-of-tree)=0(1log n)
— insert: put at new last position in tree and percolate-up

- deleteMin: remove root, put last element at root and
percolate-down

26

Array Representation of Binary Trees

implicit (array) implementation:

From node i:

left child: i*2
right child: 1*2+1
parent: 1/2

(wasting index O is
convenient for the
index arithmetic)

A | B

C

D

J K | L

0 1 2

3

4

27

9 10 11 12

13

Judging the array implementation

Pros:
* Non-data space: just index 0 and unused space on right

— In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)

— Array would waste more space if tree were not complete
« Multiplying and dividing by 2 is very fast (shift operations in
hardware)
« Last used position is just index size

Cons:

« Same might-be-empty or might-get-full problems we saw with
stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array
implementation

28

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Pseudocode: insert into binary heap

void insert(int wval) { int percolateUp (int hole,
if (size==arr.length-1) _ int val) {
resize () ; while (hole > 1 &&
’ val < arr[hole/2])

sizet+; arr[hole] = arr[hole/2];
i=percolateUp (size,val) ; hole = hole / 2;
arr[i] = wval; }
} return hole;
}

10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50

29

Pseudocode: deleteMin from binary heap

int deleteMin() { int percolateDown (int hole,
int val) {

if (isEmpty()) throw.. while (2*hole <= size) {

ans = arr[1]; left = 2*hole;
hole = percolateDown right = left + 1;
3 . if (right > size ||
hol (1Larr[81?e])c arg[left] < arr[right])
a?r[ole] = arr[size]; target = left;
Slze——, else
return ans; target = right;

} if (arr[target] < val) {
arr [hole] = arr[target];
hole = target;

} else
break;

}

return hole;

}

10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13
30

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

31

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

16

32

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

16

32

33

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

32

34

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

32

67

35

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

32

67

105

36

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

32 | 16 | 67 | 105 43
2 3 4 5 6
(4
(32 (16
05 (43 (D

37

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

32 67 | 105 | 43 | 16
2 4 5 6 7
(32 (4

05 (43 (@8

38

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

32 67 | 105 | 43 | 16
2 4 5 6 7
(32 (4

05 (43 (@8

39

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

16 | 32 67 | 105 | 43
12 4 5 6
(32 (4

(8D @5 (43

40

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

32 | 16 | 67 | 105 43
2 3 4 5 6
(4
(32 (16
105) (43

41

Other operations

« decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p

— Change priority and percolate up

« increaseKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value by p

— Change priority and percolate down

« remove: given pointer to object in priority queue (e.g., its array
index), remove it from the queue

— decreaseKey Wwith p = ©, then deleteMin

Running time for all these operations?

42

Build Heap

« Suppose you have n items to put in a new (empty) priority queue
— Call this operation buildHeap

* nNinserts
— Only choice if ADT doesn’t provide buildHeap explicitly
— O(n logn)

Why would an ADT provide this unnecessary operation?
— Convenience
— Efficiency: an O(n) algorithm called Floyd’s Method

— Common issue in ADT design: how many specialized
operations

43

Floyd’s Method

1. Use nitems to make any complete tree you want
— Thatis, put them in array indices 1,...,n

2. Treat it as a heap and fix the heap-order property

— Bottom-up: percolate down starting at nodes one level up
from leaves, work up toward the root

void buildHeap () {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val) ;
arr[hole] = wval;
}
}

44

Example

In tree form for readability

— Purple for node not less than
descendants

* heap-order problem
— Notice no leaves are purple

— Check/fix each non-leaf
bottom-up (6 steps here)

45

« Happens to already be less than children (er, child)

46

» Percolate down (notice that moves 1 up)

47

* Another nothing-to-do step

48

» Percolate down as necessary (steps 4a and 4b)

49

50

51

But is it right?

« "Seems to work”
— Let’s prove it restores the heap property (correctness)
— Then let’s prove its running time (efficiency)

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = wval;

}
}

52

Correctness

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = wval;

}
}

Loop Invariant: For all 9>1, arr[j] is less than its children
« Trueinitially: If § > size/2, then jis aleaf
— Otherwise its left child would be at position > size

» True after one more iteration: loop body and percolateDown
make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

53

Efficiency

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = wval;

}
}

Easy argument: buildHeap is O(n 1log n) where nis size
« size/2 loop iterations
« Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm...

54

Efficiency

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = wval;

}
}

Better argument. buildHeap is O(n) where nis size
« size/2 total loop iterations: O(n)

» 1/2 the loop iterations percolate at most 1 step

* 1/4 the loop iterations percolate at most 2 steps

* 1/8 the loop iterations percolate at most 3 steps

.
o ((1/2) + (2/4) + (3/8) + (4/16) + ...) < 2 (page 4 of Weiss) ;§=2
— So at most 2 (size/2) total percolate steps: O(n)

55

Lessons from buildHeap

* Without buildHeap, clients can implement their own in O(n log
n) worst case

» By providing a specialized operation (with access to the internal
data), we can do O(n) worst case

— Intuition: Most data is near a leaf, so better to percolate down

« Can analyze this algorithm for:
— Correctness:
« Non-trivial inductive proof using loop invariant
— Efficiency:
 First analysis easily proved it was O(n 1og n)
« Tighter analysis shows same algorithm is O(n)

56

Other branching factors

d-heaps: have d children instead of 2
— Makes heaps shallower

Homework: Implement a 3-heap
— Just have three children instead of 2
— Still use an array with all positions from 1...heap-size used

m Children Indices

1 2,3,4
2 5,6,7
3 8,9,10
4 11,12,13
5 14,15,16

57

