
CSE373: Data Structures & Algorithms

Lecture 8: Priority Queues and Binary Heaps

Lauren Milne
Summer 2015

Announcements

•  Homework 2 due today
•  Homework 3 out today (due July 22nd) J
•  Midterm next Friday

•  Today
–  AVL Tree Review
–  Priority Queues
–  Min Heaps

2

The general right-left case

3

a

X

b
c

h-1

h
h

h

V U

h+1
h+2

h+3

Z

The general right-left case

4

a

X

b
c

h-1

h
h-1

h

V U

h
h+1

h+2

Z

Before we added the node, the tree was balanced. . .

If V (and U) were of height h, would the tree be balanced here?

The general right-left case

5

a

X

b
c

h-1

h
h-1

h

V U

h
h+1

h+2

Z

a

X

b
c

h

h
+
1

h

h+1

V U

h+1
h+2

h+3

Z

The actual value of h can be anything, we only care about the
relative heights of the subtrees…

These two trees are equivalent, we just redefined h

The general right-left case

6

a

X

b
c

h-1

h
h

h

V U

h+1
h+2

h+3

Z

a

X

c

h-1
h+1 h

h

V
U

h+2

h+3

Z

b
h

c

X
h-1

h+1
h

h+1

V U

h+2

Z

b
h

a
h

Insert, summarized

•  Insert as in a BST

•  Check back up path for imbalance, which will be 1 of 4 cases:
–  Node’s left-left grandchild is too tall
–  Node’s left-right grandchild is too tall
–  Node’s right-left grandchild is too tall
–  Node’s right-right grandchild is too tall

•  Only one case occurs because tree was balanced before insert

•  After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
–  So all ancestors are now balanced

7

AVL Trees efficiency

•  Worst-case complexity of find: O(log n)

–  Tree is balanced

•  Worst-case complexity of insert: O(log n)
–  Tree starts balanced
–  A rotation is O(1) and there’s an O(log n) path to root
–  Tree ends balanced

•  Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…

8

Pros and Cons of AVL Trees

9

Arguments for AVL trees:

1.  All operations logarithmic worst-case because trees are always

balanced
2.  Height balancing adds no more than a constant factor to the speed

of insert and delete

Arguments against AVL trees:

1.  Difficult to program & debug [but done once in a library!]
2.  More space for height field
3.  Asymptotically faster but rebalancing takes a little time
4.  If amortized (later, I promise) logarithmic time is enough, use splay

trees (also in the text)

Done with AVL Trees (….phew!)

next up…

Priority Queues ADT
(Homework 3 J)

10

A new ADT: Priority Queue

•  A priority queue holds compare-able data

–  Like dictionaries, we need to compare items
•  Given x and y, is x less than, equal to, or greater than y
•  Meaning of the ordering can depend on your data

–  Integers are comparable, so will use them in examples
•  But the priority queue ADT is much more general
•  Typically two fields, the priority and the data

11

Priorities
•  Each item has a “priority”

–  In our examples, the lesser item is the one with the greater priority
–  So “priority 1” is more important than “priority 4”
–  (Just a convention, think “first is best”)

•  Operations:
–  insert
–  deleteMin
–  is_empty

•  Key property: deleteMin returns and deletes the item with greatest
priority (lowest priority value)
–  Can resolve ties arbitrarily

12

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

Example

 insert x1 with priority 5
 insert x2 with priority 3
 a = deleteMin // x2
 insert x3 with priority 2
 insert x4 with priority 6
 c = deleteMin // x3
 d = deleteMin // x1

•  Analogy: insert is like enqueue, deleteMin is like dequeue

–  But the whole point is to use priorities instead of FIFO

13

insert deleteMin
5 3

2 6

Applications

Like all good ADTs, the priority queue arises often

•  Run multiple programs in the operating system
–  “critical” before “interactive” before “compute-intensive”

•  Treat hospital patients in order of severity (or triage)
•  Forward network packets in order of urgency
•  Select most frequent symbols for data compression
•  Sort (first insert all, then repeatedly deleteMin)

–  Much like Homework 1 uses a stack to implement reverse

14

Finding a good data structure

•  Will show an efficient, non-obvious data structure for this ADT
–  But first let’s analyze some “obvious” ideas for n data items

data insert algorithm / time deleteMin algorithm / time
unsorted array
unsorted linked list
sorted circular array
sorted linked list
binary search tree
AVL tree

15

add at end O(1) search O(n)
add at front O(1) search O(n)
search / shift O(n) move front O(1)
put in right place O(n) remove at front O(1)
put in right place O(n) leftmost O(n)
put in right place O(log n) leftmost O(log n)

Our data structure
A binary min-heap (or just binary heap or just heap) has:
•  Structure property: A complete binary tree
•  Heap property: The priority of every (non-root) node is less

important than the priority of its parent
–  Not a binary search tree

16

7 3

18 5

10 not a heap

99 60 40

80 20

10

50 700

85

a heap

So:
•  Where is the highest-priority item?
•  What is the height of a heap with n items?

Operations: basic idea

•  findMin: return root.data
•  deleteMin:

1.   answer = root.data
2.  Move right-most node in last

row to root to restore
structure property

3.  “Percolate down” to restore
heap property

•  insert:
1.  Put new node in next position

on bottom row to restore
structure property

2.  “Percolate up” to restore
heap property

17

99 60 40

80 20

10

50 700

85

Overall strategy:
•  Preserve structure property
•  Break and restore heap

property

18

DeleteMin

3 4

9 8 5 7

10 6 9 11

Delete (and later return) value at root node

1

19

DeleteMin: Keep the Structure Property

•  We now have a “hole” at the root
–  Replace it with another node

•  Want to keep structure property

•  Pick the last node on the bottom row of the
tree and move it to the “hole”

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11

20

DeleteMin: Restore the Heap Property
Percolate down:
•  Compare priority of item with children
•  If priority is less important, swap with the most important child and

 repeat
•  Done if both children are less important than the item or we’ve

 reached a leaf node

3 4

9 8 5 7

10

6 9 11

4

9 8 5 7

10

6 9 11

3

8 4

9 10 5 7

6 9 11

3
?

?

What is the run time?

21

DeleteMin: Run Time Analysis

•  Run time is O(height of heap)

•  A heap is a complete binary tree

•  Height of a complete binary tree of n nodes?
–  height = ⎣ log2(n) ⎦

•  Run time of deleteMin is O(log n)

22

Insert

•  Add a value to the tree

•  Afterwards, structure and heap
properties must still be correct

 8 4

9 10 5 7

6 9 11

1

2

23

Insert: Maintain the Structure Property

•  There is only one valid tree shape after
we add one more node

•  So put our new data there and then
focus on restoring the heap property 8 4

9 10 5 7

6 9 11

1

2

24

Insert: Restore the heap property

2

8 4

9 10 5 7

6 9 11

1

Percolate up:
•  Put new data in new location
•  If parent is less important, swap with parent, and continue
•  Done if parent is more important than item or reached root

?

2
5

8 4

9 10 7

6 9 11

1

?

2

5

8

9 10 4 7

6 9 11

1 ?

2

What is the running time?
Like deleteMin, worst-case time proportional to tree height: O(log n)

Binary Heap

•  Operations
–  O(log n) insert
–  O(log n) deleteMin worst-case
–  Very good constant factors
–  If items arrive in random order, then insert is O(1) on average

•  Because approx. 75% of nodes in bottom two rows

25

Summary
•  Priority Queue ADT:

–  insert comparable object,
–  deleteMin

•  Binary heap data structure:

–  Complete binary tree
–  Each node has less important

 priority value than its parent

•  insert and deleteMin operations = O(height-of-tree)=O(log n)

–  insert: put at new last position in tree and percolate-up
–  deleteMin: remove root, put last element at root and

 percolate-down

26

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

99 60 40

80 20

10

700 50

85

27

Array Representation of Binary Trees

G E D

C B

A

J K H I

F

L

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

Judging the array implementation

Pros:
•  Non-data space: just index 0 and unused space on right

–  In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)

–  Array would waste more space if tree were not complete
•  Multiplying and dividing by 2 is very fast (shift operations in

hardware)
•  Last used position is just index size

Cons:
•  Same might-be-empty or might-get-full problems we saw with

stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array
implementation

28

Pseudocode: insert into binary heap

29

void insert(int val) {
 if(size==arr.length-1)

 resize();
 size++;
 i=percolateUp(size,val);
 arr[i] = val;
}

int percolateUp(int hole,
 int val) {
 while(hole > 1 &&
 val < arr[hole/2])
 arr[hole] = arr[hole/2];
 hole = hole / 2;
 }
 return hole;
}

99 60 40

80 20

10

70 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Pseudocode: deleteMin from binary heap

30

int deleteMin() {
 if(isEmpty()) throw…
 ans = arr[1];
 hole = percolateDown
 (1,arr[size]);
 arr[hole] = arr[size];
 size--;
 return ans;
}

int percolateDown(int hole,
 int val) {
 while(2*hole <= size) {
 left = 2*hole;
 right = left + 1;
 if(right > size ||
 arr[left] < arr[right])
 target = left;
 else
 target = right;
 if(arr[target] < val) {
 arr[hole] = arr[target];
 hole = target;
 } else
 break;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

31

0 1 2 3 4 5 6 7

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

32

16
0 1 2 3 4 5 6 7

 16

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

33

16 32
0 1 2 3 4 5 6 7

 16

32

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

34

4 32 16
0 1 2 3 4 5 6 7

 4

32 16

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

35

4 32 16 67
0 1 2 3 4 5 6 7

 4

32 16

67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

36

4 32 16 67 105
0 1 2 3 4 5 6 7

 4

32 16

105 67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

37

4 32 16 67 105 43
0 1 2 3 4 5 6 7

 4

32 16

43 105 67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

38

2 32 4 67 105 43 16
0 1 2 3 4 5 6 7

 2

32 4

16 43 105 67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

39

32 4 67 105 43 16
0 1 2 3 4 5 6 7

32 4

16 43 105 67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

40

16 32 4 67 105 43
0 1 2 3 4 5 6 7

 16

32 4

43 105 67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

41

4 32 16 67 105 43
0 1 2 3 4 5 6 7

 4

32 16

43 105 67

Other operations

•  decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
–  Change priority and percolate up

•  increaseKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value by p
–  Change priority and percolate down

•  remove: given pointer to object in priority queue (e.g., its array
index), remove it from the queue

–  decreaseKey with p = ∞, then deleteMin

Running time for all these operations?

42

Build Heap

•  Suppose you have n items to put in a new (empty) priority queue
–  Call this operation buildHeap

•  n inserts
–  Only choice if ADT doesn’t provide buildHeap explicitly
–  O(n log n)

•  Why would an ADT provide this unnecessary operation?
–  Convenience
–  Efficiency: an O(n) algorithm called Floyd’s Method
–  Common issue in ADT design: how many specialized

operations

43

Floyd’s Method

1.  Use n items to make any complete tree you want
–  That is, put them in array indices 1,…,n

2.  Treat it as a heap and fix the heap-order property
–  Bottom-up: percolate down starting at nodes one level up

from leaves, work up toward the root

44

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Example

•  In tree form for readability
–  Purple for node not less than

descendants
•  heap-order problem

–  Notice no leaves are purple
–  Check/fix each non-leaf

bottom-up (6 steps here)

45

6 7 1 8

9 2 10 3

11 5

12

4

Example

46

6 7 1 8

9 2 10 3

11 5

12

4 6 7 1 8

9 2 10 3

11 5

12

4

Step 1

•  Happens to already be less than children (er, child)

Example

47

6 7 1 8

9 2 10 3

11 5

12

4

Step 2

•  Percolate down (notice that moves 1 up)

6 7 10 8

9 2 1 3

11 5

12

4

Example

48

Step 3

•  Another nothing-to-do step

6 7 10 8

9 2 1 3

11 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

49

Step 4

•  Percolate down as necessary (steps 4a and 4b)

11 7 10 8

9 6 1 3

2 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

50

Step 5

11 7 10 8

9 6 5 3

2 1

12

4 11 7 10 8

9 6 1 3

2 5

12

4

Example

51

Step 6

11 7 10 8

9 6 5 4

2 3

1

12 11 7 10 8

9 6 5 3

2 1

12

4

But is it right?

•  “Seems to work”
–  Let’s prove it restores the heap property (correctness)
–  Then let’s prove its running time (efficiency)

52

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
•  True initially: If j > size/2, then j is a leaf

–  Otherwise its left child would be at position > size
•  True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

53

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Efficiency

Easy argument: buildHeap is O(n log n) where n is size
•  size/2 loop iterations
•  Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm…

54

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Efficiency

Better argument: buildHeap is O(n) where n is size
•  size/2 total loop iterations: O(n)
•  1/2 the loop iterations percolate at most 1 step
•  1/4 the loop iterations percolate at most 2 steps
•  1/8 the loop iterations percolate at most 3 steps
•  …
•  ((1/2) + (2/4) + (3/8) + (4/16) + …) < 2 (page 4 of Weiss)

–  So at most 2(size/2) total percolate steps: O(n)
55

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

i
2ii=1

∞

∑ = 2

Lessons from buildHeap

•  Without buildHeap, clients can implement their own in O(n log
n) worst case

•  By providing a specialized operation (with access to the internal
data), we can do O(n) worst case
–  Intuition: Most data is near a leaf, so better to percolate down

•  Can analyze this algorithm for:
–  Correctness:

•  Non-trivial inductive proof using loop invariant
–  Efficiency:

•  First analysis easily proved it was O(n log n)
•  Tighter analysis shows same algorithm is O(n)

56

Other branching factors
•  d-heaps: have d children instead of 2

–  Makes heaps shallower

•  Homework: Implement a 3-heap
–  Just have three children instead of 2
–  Still use an array with all positions from 1…heap-size used

57

 Index Children Indices
1 2,3,4
2 5,6,7
3 8,9,10
4 11,12,13
5 14,15,16
… …

