

CSE373: Data Structures & Algorithms Lecture 8: Priority Queues and Binary Heaps

Lauren Milne Summer 2015

Announcements

- Homework 2 due today
- Homework 3 out today (due July 22nd) ☺
- Midterm next Friday

- Today
 - AVL Tree Review
 - Priority Queues
 - Min Heaps

Before we added the node, the tree was balanced...

If V (and U) were of height h, would the tree be balanced here?

The actual value of h can be anything, we only care about the relative heights of the subtrees...

These two trees are equivalent, we just redefined h

Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Node's left-left grandchild is too tall
 - Node's left-right grandchild is too tall
 - Node's right-left grandchild is too tall
 - Node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced

AVL Trees efficiency

- Worst-case complexity of find: $O(\log n)$
 - Tree is balanced
- Worst-case complexity of insert: $O(\log n)$
 - Tree starts balanced
 - A rotation is O(1) and there's an $O(\log n)$ path to root
 - Tree ends balanced
- Worst-case complexity of **buildTree**: $O(n \log n)$

Takes some more rotation action to handle delete...

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. All operations logarithmic worst-case because trees are *always* balanced
- 2. Height balancing adds no more than a constant factor to the speed of **insert** and **delete**

Arguments against AVL trees:

- 1. Difficult to program & debug [but done once in a library!]
- 2. More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. If *amortized* (later, I promise) logarithmic time is enough, use splay trees (also in the text)

Done with AVL Trees (....phew!)

next up...

Priority Queues ADT (Homework 3 ☺)

A new ADT: Priority Queue

- A priority queue holds compare-able data
 - Like dictionaries, we need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the *priority* and the *data*

Priorities

- Each item has a "priority"
 - In our examples, the *lesser* item is the one with the greater priority
 - So "priority 1" is more important than "priority 4"
 - (Just a convention, think "first is best")
- Operations:
 - insert
 - deleteMin
 - is_empty

- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Applications

Like all good ADTs, the priority queue arises often

- Run multiple programs in the operating system
 "critical" before "interactive" before "compute-intensive"
- Treat hospital patients in order of severity (or triage)
- Forward network packets in order of urgency
- Select most frequent symbols for data compression
- Sort (first insert all, then repeatedly deleteMin)
 - Much like Homework 1 uses a stack to implement reverse

Finding a good data structure

Will show an efficient, non-obvious data structure for this ADT
 But first let's analyze some "obvious" ideas for *n* data items

data	insert algorithm / tir	ne del	eteMin algorith	m / time
unsorted array	add at end	<i>O</i> (1)	search	<i>O</i> (<i>n</i>)
unsorted linked list	add at front	O(1)	search	<i>O</i> (<i>n</i>)
sorted circular arra	y search / shift	<i>O</i> (<i>n</i>)	move front	<i>O</i> (1)
sorted linked list	put in right place	<i>O</i> (<i>n</i>)	remove at fro	nt O(1)
binary search tree	put in right place	<i>O</i> (<i>n</i>)	leftmost	<i>O</i> (<i>n</i>)
AVL tree	put in right place	O(log n)) leftmost (D(log <i>n</i>)

Our data structure

A binary min-heap (or just binary heap or just heap) has:

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is less important than the priority of its parent
 - **Not** a binary search tree

- Where is the highest-priority item?
- What is the height of a heap with *n* items?

Operations: basic idea

- findMin: return root.data
- deleteMin:
 - 1. answer = root.data
 - 2. Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap property
- insert:
 - Put new node in next position on bottom row to restore structure property
 - 2. "Percolate up" to restore heap property

Overall strategy:

- Preserve structure property
- Break and restore heap property

DeleteMin

Delete (and later return) value at root node

DeleteMin: Keep the Structure Property

- We now have a "hole" at the root
 Replace it with another node
- Want to keep structure property
- Pick the last node on the bottom row of the tree and move it to the "hole"

DeleteMin: Restore the Heap Property

Percolate down:

- Compare priority of item with children
- If priority is less important, swap with the most important child and repeat
- Done if both children are less important than the item or we've reached a leaf node

What is the run time?

DeleteMin: Run Time Analysis

- Run time is O(height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 height = [log₂(n)]
- Run time of **deleteMin** is $O(\log n)$

Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct

Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property

Insert: Restore the heap property

Percolate up:

- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root

What is the running time?

Like deleteMin, worst-case time proportional to tree height: O(log n)

Binary Heap

- Operations
 - O(log n) insert
 - O(log n) deleteMin worst-case
 - Very good constant factors
 - If items arrive in random order, then insert is O(1) on average
 - Because approx. 75% of nodes in bottom two rows

Summary

- Priority Queue ADT:
 - insert comparable object,
 - deleteMin
- Binary heap data structure:
 - Complete binary tree
 - Each node has less important priority value than its parent

- insert and deleteMin operations = O(height-of-tree)=O(log n)
 - insert: put at new last position in tree and percolate-up
 - deleteMin: remove root, put last element at root and percolate-down

Array Representation of Binary Trees

From node i:

left child: i*2 right child: i*2+1 parent: i/2

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

Judging the array implementation

Pros:

- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so *n*-1 wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index **size**

Cons:

 Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array implementation

This pseudocode uses ints. In real use, you will have data nodes with priorities.

Pseudocode: insert into binary heap

```
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}
```


	10	20	80	40	60	85	99	700	50				
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Pseudocode: deleteMin from binary heap

```
int percolateDown(int hole,
int deleteMin() {
  if(isEmpty()) throw...
                                 while(2*hole <= size) {</pre>
  ans = arr[1];
                                  left = 2*hole;
                                  right = left + 1;
  hole = percolateDown
                                  if(right > size ||
           (1,arr[size]);
                                     arr[left] < arr[right])</pre>
  arr[hole] = arr[size];
                                    target = left;
  size--;
                                  else
  return ans;
                                    target = right;
                                  if(arr[target] < val) {</pre>
}
                                    arr[hole] = arr[target];
             10
                                    hole = target;
                                  } else
                  80
         20
                                      break;
           60
               85
                    99
                                 return hole;
         50
   700
                             85
                                  99
                                      700
                                           50
      10
           20
               80
                    40
                         60
           2
                3
                         5
                                  7
                                       8
                                            9
  0
                    4
                              6
                                                10
       1
```

30

13

12

11

int val) {

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

- 1. insert: 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin

Other operations

- decreaseKey: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up
- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by *p*
 - Change priority and percolate down
- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - decreaseKey with $p = \infty$, then deleteMin

Running time for all these operations?

Build Heap

- Suppose you have *n* items to put in a new (empty) priority queue
 - Call this operation buildHeap
- *n*inserts
 - Only choice if ADT doesn't provide **buildHeap** explicitly
 - $O(n \log n)$
- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an O(n) algorithm called Floyd's Method
 - Common issue in ADT design: how many specialized operations

Floyd's Method

- 1. Use *n* items to make any complete tree you want
 - That is, put them in array indices 1,...,*n*
- 2. Treat it as a heap and fix the heap-order property
 - Bottom-up: percolate down starting at nodes one level up from leaves, work up toward the root

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

- In tree form for readability
 - Purple for node not less than descendants
 - heap-order problem
 - Notice no leaves are purple
 - Check/fix each non-leaf bottom-up (6 steps here)

• Happens to already be less than children (er, child)

• Percolate down (notice that moves 1 up)

• Another nothing-to-do step

• Percolate down as necessary (steps 4a and 4b)

But is it right?

- "Seems to work"
 - Let's prove it restores the heap property (correctness)
 - Then let's prove its running time (efficiency)

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Loop Invariant: For all j>i, arr[j] is less than its children

- True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Easy argument: **buildHeap** is $O(n \log n)$ where *n* is **size**

- size/2 loop iterations
- Each iteration does one percolateDown, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

```
Efficiency
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Better argument: buildHeap is O(n) where n is size

- **size/2** total loop iterations: *O*(*n*)
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ... • $((1/2) + (2/4) + (3/8) + (4/16) + ...) < 2 \text{ (page 4 of Weiss)} \quad \sum_{i=1}^{\infty} \frac{i}{2^i} = 2$ - So at most 2 (size/2) *total* percolate steps: O(n)

Lessons from buildHeap

- Without **buildHeap**, clients can implement their own in *O*(*n* **log** *n*) worst case
- By providing a specialized operation (with access to the internal data), we can do *O*(*n*) worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness:
 - Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was O(n log n)
 - Tighter analysis shows same algorithm is O(n)

Other branching factors

- *d*-heaps: have *d* children instead of 2
 - Makes heaps shallower
- Homework: Implement a 3-heap
 - Just have three children instead of 2
 - Still use an array with all positions from 1...heap-size used

Index	Children Indices			
1	2,3,4			
2	5,6,7			
3	8,9,10			
4	11,12,13			
5	14,15,16			