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Announcements 

•  Homework 2 due today 
•  Homework 3 out today (due July 22nd) J 
•  Midterm next Friday 

•  Today 
–  AVL Tree Review 
–  Priority Queues 
–  Min Heaps 
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The general right-left case 
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The general right-left case 
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Before we added the node, the tree was balanced. . . 

If V (and U) were of height h, would the tree be balanced here? 



The general right-left case 
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The actual value of h can be anything, we only care about the 
relative heights of the subtrees… 

These two trees are equivalent, we just redefined h 



The general right-left case 
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Insert, summarized 

•  Insert as in a BST 

•  Check back up path for imbalance, which will be 1 of 4 cases: 
–  Node’s left-left grandchild is too tall 
–  Node’s left-right grandchild is too tall 
–  Node’s right-left grandchild is too tall 
–  Node’s right-right grandchild is too tall 

•  Only one case occurs because tree was balanced before insert 

•  After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion 
–  So all ancestors are now balanced 
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AVL Trees efficiency 
 
•  Worst-case complexity of find: O(log n) 

–  Tree is balanced 
 

•  Worst-case complexity of insert: O(log n) 
–  Tree starts balanced 
–  A rotation is O(1) and there’s an O(log n) path to root 
–  Tree ends balanced 

•  Worst-case complexity of buildTree: O(n log n) 
 
Takes some more rotation action to handle delete… 
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Pros and Cons of AVL Trees 
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Arguments for AVL trees: 
 
1.  All operations logarithmic worst-case because trees are always  

balanced 
2.  Height balancing adds no more than a constant factor to the speed 

of insert and delete 
 
Arguments against AVL trees: 
 
1.  Difficult to program & debug [but done once in a library!] 
2.  More space for height field 
3.  Asymptotically faster but rebalancing takes a little time 
4.  If amortized (later, I promise) logarithmic time is enough, use splay 

trees (also in the text) 



Done with AVL Trees (….phew!) 
 
next up… 
 
Priority Queues ADT 
(Homework 3 J) 
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A new ADT: Priority Queue 

•  A priority queue holds compare-able data 
 

–  Like dictionaries, we need to compare items 
•  Given x and y, is x less than, equal to, or greater than y 
•  Meaning of the ordering can depend on your data 
 

–  Integers are comparable, so will use them in examples 
•  But the priority queue ADT is much more general 
•  Typically two fields, the priority and the data 
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Priorities 
•  Each item has a “priority” 

–  In our examples, the lesser item is the one with the greater priority 
–  So “priority 1” is more important than “priority 4” 
–  (Just a convention, think “first is best”) 

•  Operations:  
–  insert 
–  deleteMin 
–  is_empty 

•  Key property: deleteMin  returns and deletes the item with greatest 
priority (lowest priority value) 
–  Can resolve ties arbitrarily 
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insert deleteMin 

        6        2 
  15        23 
          12   18 
45   3    7 



Example 

 insert x1 with priority 5 
 insert x2 with priority 3 
 a = deleteMin // x2 
 insert x3 with priority 2 
 insert x4 with priority 6 
 c = deleteMin // x3 
 d = deleteMin  // x1 

 
•  Analogy: insert is like enqueue, deleteMin is like dequeue 

–  But the whole point is to use priorities instead of FIFO 
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insert deleteMin 
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Applications 

Like all good ADTs, the priority queue arises often 

•  Run multiple programs in the operating system 
–  “critical” before “interactive” before “compute-intensive” 

•  Treat hospital patients in order of severity (or triage) 
•  Forward network packets in order of urgency 
•  Select most frequent symbols for data compression  
•  Sort (first insert all, then repeatedly deleteMin) 

–  Much like Homework 1 uses a stack to implement reverse 
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Finding a good data structure 

•  Will show an efficient, non-obvious data structure for this ADT 
–  But first let’s analyze some “obvious” ideas for n data items 

data          insert algorithm / time      deleteMin algorithm / time 
unsorted array   
unsorted linked list 
sorted circular array 
sorted linked list  
binary search tree 
AVL tree 
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add at end          O(1)         search                O(n) 
add at front         O(1)         search                O(n) 
search / shift       O(n)          move front          O(1) 
put in right place O(n)          remove at front   O(1) 
put in right place O(n)       leftmost               O(n) 
put in right place O(log n)  leftmost       O(log n) 



Our data structure 
A binary min-heap (or just binary heap or just heap) has: 
•  Structure property: A complete binary tree  
•  Heap property: The priority of every (non-root) node is less 

important than the priority of its parent 
–  Not a binary search tree 
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So: 
•  Where is the highest-priority item? 
•  What is the height of a heap with n items? 



Operations: basic idea 

•  findMin: return root.data 
•  deleteMin:  

1.   answer = root.data 
2.  Move right-most node in last 

row to root to restore 
structure property 

3.  “Percolate down” to restore 
heap property 

•  insert: 
1.  Put new node in next position 

on bottom row to restore 
structure property 

2.  “Percolate up” to restore 
heap property 
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Overall strategy: 
•  Preserve structure property 
•  Break and restore heap 

property 
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DeleteMin 
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DeleteMin: Keep the Structure Property 

•  We now have a “hole” at the root 
–  Replace it with another node 
 

•  Want to keep structure property 

•  Pick the last node on the bottom row of the 
tree and move it to the “hole” 
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DeleteMin: Restore the Heap Property 
Percolate down:  
•   Compare priority of item with children  
•   If priority is less important, swap with the most important child and 

 repeat 
•   Done if both children are less important than the item or we’ve 

 reached a leaf node 

3 4 

9 8 5 7 

10 

6 9 11 

4 

9 8 5 7 

10 

6 9 11 

3 

8 4 

9 10 5 7 

6 9 11 

3 
? 

? 

What is the run time? 



21 

DeleteMin: Run Time Analysis 

•  Run time is O(height of heap) 

•  A heap is a complete binary tree 

•  Height of a complete binary tree of n nodes? 
–  height = ⎣ log2(n) ⎦ 

•  Run time of deleteMin is O(log n) 
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Insert 

•  Add a value to the tree 

•  Afterwards, structure and heap 
properties must still be correct 
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Insert: Maintain the Structure Property 

•  There is only one valid tree shape after 
we add one more node 

•  So put our new data there and then 
focus on restoring the heap property 8 4 
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Insert: Restore the heap property 
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Percolate up: 
•   Put new data in new location 
•   If parent is less important, swap with parent, and continue 
•   Done if parent is more important than item or reached root 
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What is the running time? 
Like deleteMin, worst-case time proportional to tree height: O(log n) 



Binary Heap 

•  Operations 
–  O(log n) insert  
–  O(log n) deleteMin worst-case 
–  Very good constant factors 
–  If items arrive in random order, then insert is O(1) on average 

•  Because approx. 75% of nodes in bottom two rows  
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Summary 
•  Priority Queue ADT:  

–  insert comparable object,  
–  deleteMin 

 
•  Binary heap data structure:  

–  Complete binary tree  
–  Each node has less important  

 priority value than its parent 
 
•  insert and deleteMin operations = O(height-of-tree)=O(log n) 

–  insert:        put at new last position in tree and percolate-up 
–  deleteMin:  remove root, put last element at root and   

                     percolate-down 
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insert deleteMin 
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Array Representation of Binary Trees 
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From node i: 
 
left child: i*2 
right child: i*2+1 
parent: i/2 
 
(wasting index 0 is 
convenient for the 
index arithmetic) 
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implicit (array) implementation: 



Judging the array implementation 

Pros: 
•  Non-data space: just index 0 and unused space on right 

–  In conventional tree representation, one edge per node 
(except for root), so n-1 wasted space (like linked lists) 

–  Array would waste more space if tree were not complete 
•  Multiplying and dividing by 2 is very fast (shift operations in 

hardware) 
•  Last used position is just index size 

Cons: 
•  Same might-be-empty or might-get-full problems we saw with 

stacks and queues (resize by doubling as necessary) 
 

Pros outweigh cons: min-heaps almost always use array 
implementation 
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Pseudocode: insert into binary heap 
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void insert(int val) { 
 if(size==arr.length-1) 

    resize();   
  size++; 
  i=percolateUp(size,val); 
  arr[i] = val; 
} 

int percolateUp(int hole,  
                int val) { 
  while(hole > 1 && 
        val < arr[hole/2]) 
    arr[hole] = arr[hole/2]; 
    hole = hole / 2; 
  } 
  return hole; 
} 
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10 20 80 40 60 85 99 700 50 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

This pseudocode uses ints.  In real use, 
you will have data nodes with priorities. 



Pseudocode: deleteMin from binary heap 
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int deleteMin() { 
  if(isEmpty()) throw… 
  ans = arr[1]; 
  hole = percolateDown 
          (1,arr[size]); 
  arr[hole] = arr[size]; 
  size--; 
  return ans; 
} 

int percolateDown(int hole, 
                  int val) { 
 while(2*hole <= size) { 
  left  = 2*hole;  
  right = left + 1; 
  if(right > size || 
     arr[left] < arr[right]) 
    target = left; 
  else 
    target = right; 
  if(arr[target] < val) { 
    arr[hole] = arr[target]; 
    hole = target; 
  } else 
      break; 
 } 
 return hole; 
} 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Other operations 

•  decreaseKey: given pointer to object in priority queue (e.g., its 
array index), lower its priority value by p 
–  Change priority and percolate up 

•  increaseKey: given pointer to object in priority queue (e.g., its 
array index), raise its priority value by p 
–  Change priority and percolate down 

•  remove: given pointer to object in priority queue (e.g., its array 
index), remove it from the queue 

–  decreaseKey with p = ∞, then deleteMin 
 

Running time for all these operations? 
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Build Heap 

•  Suppose you have n items to put in a new (empty) priority queue 
–  Call this operation buildHeap  

•  n inserts 
–  Only choice if ADT doesn’t provide buildHeap explicitly 
–  O(n log n) 

•  Why would an ADT provide this unnecessary operation? 
–  Convenience 
–  Efficiency: an O(n) algorithm called Floyd’s Method 
–  Common issue in ADT design: how many specialized 

operations 
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Floyd’s Method 

1.  Use n items to make any complete tree you want 
–  That is, put them in array indices 1,…,n 

2.  Treat it as a heap and fix the heap-order property 
–  Bottom-up: percolate down starting at nodes one level up 

from leaves, work up toward the root 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Example 

•  In tree form for readability 
–  Purple for node not less than 

descendants  
•  heap-order problem 

–  Notice no leaves are purple 
–  Check/fix each non-leaf 

bottom-up (6 steps here) 
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Example 
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Step 1 

•  Happens to already be less than children (er, child) 



Example 
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Example 
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Step 3 

•  Another nothing-to-do step 
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Example 
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Step 4 

•  Percolate down as necessary (steps 4a and 4b) 
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Example 
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Step 5 
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Example 
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But is it right? 

•  “Seems to work” 
–  Let’s prove it restores the heap property (correctness) 
–  Then let’s prove its running time (efficiency) 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Correctness 

Loop Invariant: For all j>i, arr[j] is less than its children 
•  True initially: If j > size/2, then j is  a leaf 

–  Otherwise its left child would be at position > size 
•  True after one more iteration: loop body and percolateDown 

make arr[i] less than children without breaking the property 
for any descendants 

So after the loop finishes, all nodes are less than their children 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Efficiency 

Easy argument:  buildHeap is O(n log n) where n is size 
•  size/2 loop iterations 
•  Each iteration does one percolateDown, each is O(log n) 

This is correct, but there is a more precise (“tighter”) analysis of 
the algorithm… 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Efficiency 

Better argument:  buildHeap is O(n) where n is size 
•  size/2 total loop iterations: O(n) 
•  1/2 the loop iterations percolate at most 1 step 
•  1/4 the loop iterations percolate at most 2 steps 
•  1/8 the loop iterations percolate at most 3 steps 
•  … 
•  ((1/2) + (2/4) + (3/8) + (4/16) + …) < 2 (page 4 of Weiss)  

–  So at most 2(size/2) total percolate steps: O(n)  
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 

i
2ii=1

∞

∑ = 2



Lessons from buildHeap 

•  Without buildHeap, clients can implement their own in  O(n log 
n) worst case 

 

•  By providing a specialized operation (with access to the internal 
data), we can do O(n) worst case 
–  Intuition: Most data is near a leaf, so better to percolate down 

•  Can analyze this algorithm for: 
–  Correctness:  

•  Non-trivial inductive proof using loop invariant 
–  Efficiency: 

•  First analysis easily proved it was O(n log n) 
•  Tighter analysis shows same algorithm is O(n) 
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Other branching factors 
•  d-heaps: have d children instead of 2 

–  Makes heaps shallower 

•  Homework: Implement a 3-heap 
–  Just have three children instead of 2 
–  Still use an array with all positions from 1…heap-size used 
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 Index Children Indices 
1 2,3,4 
2 5,6,7 
3 8,9,10 
4 11,12,13 
5 14,15,16 
… … 


