
CSE373:	 Data	 Structures	 &	 Algorithms	
	

Lecture	 7:	 AVL	 Trees	

Lauren	 Milne	
Summer	 2015	

1	

Observation
•  BST: the shallower the better!

Solution: Require a Balance Condition that
1.  Ensures depth is always O(log n)
2.  Is efficient to maintain

2

How can we make a BST efficient?

•  When we build the tree, make sure it’s balanced.

•  BUT…Balancing a tree only at build time is insufficient.

•  We also need to also keep the tree balanced as we perform
operations.

Potential Balance Conditions
1.  Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Too weak!
Height mismatch example:

Too weak!
Double chain example:

3

Potential Balance Conditions
3.  Left and right subtrees of every node

have equal number of nodes

4.  Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2n – 1 nodes)

Too strong!
Only perfect trees (2n – 1 nodes)

4

5

The AVL Balance Condition
Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 ≤ balance(x) ≤ 1

•  Ensures small depth
–  Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h
 (i.e. height must be logarithmic in number of nodes)

•  Efficient to maintain
–  Using single and double rotations

Announcements	

•  HW2	 due	 10:59	 on	 Friday	 via	 Dropbox.	
•  Midterm	 next	 Friday,	 sample	 midterms	 posted	
online	

•  Last	 lecture:	 Binary	 Search	 Trees
•  Today…	 AVL	 Trees	

6	

BST:	 Efficiency	 of	 Opera8ons?	

7	

•  Problem:	 operaQons	 may	 be	 inefficient	 if	 BST	 is	
unbalanced.	 	

	
•  Find,	 insert,	 delete	

–  O(n)	 in	 the	 worst	 case	
•  BuildTree	

–  O(n2)	 in	 the	 worst	 case	
	

8

The AVL Tree Data Structure
An AVL tree is a self-balancing binary search tree.

Structural properties

1.  Binary tree property (same as BST)
2.  Order property (same as for BST)

3.  Balance property:

balance of every node is between -1 and 1
balance(node) = height(node.left) – height(node.right)

Result: Worst-case depth is O(log n)

11 1

8 4

6

10 12

7 0

0 0

0

1

1

2

3

Is this an AVL tree?

9

Yes! Because the left and right subtrees of
every node have heights differing by at most 1

3

11 7 1

8 4

6

2

5

0

0 0 0

1

1

2

3

4

Is this an AVL tree?

10

Nope! The left and right subtrees of some nodes
(e.g. 1, 4, 6) have heights that differ by more than 1

Good news

Because height of AVL tree is O(log(n)), then find is O(log n)

But as we insert and delete elements, we need to:
1.  Track balance
2.  Detect imbalance
3.  Restore balance

11

An AVL Tree

20

9 2 15

5

10

30

17 7

0

0 0

0 1 1

2 2

3

Track height at all times!

12

…

3

value

height

children

10 key

Node object

AVL tree operations
•  AVL find:

–  Same as BST find

•  AVL insert:
–  First BST insert, then check balance and potentially “fix” the

AVL tree
–  Four different imbalance cases

•  AVL delete:
–  The “easy way” is lazy deletion
–  Otherwise, do the deletion and then check for several imbalance

cases (we will skip this)

13

Insert: detect potential imbalance

1.  Insert the new node as in a BST (a new leaf)
2.  For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3.  So after insertion in a subtree, detect height imbalance and

perform a rotation to restore balance at that node
4.  Always look for the deepest node that is unbalanced

14

a

Z

Y

b

X

h h
h

h+1
h+2

Insert: detect potential imbalance

1.  Insert the new node as in a BST (a new leaf)
2.  For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3.  So after insertion in a subtree, detect height imbalance and

perform a rotation to restore balance at that node
4.  Always look for the deepest node that is unbalanced

15

a

Z

Y

b

X

h+1 h
h

h+2
h+3

Case #1: Example

16

Insert(6)
Insert(3)
Insert(1)

Third insertion violates

balance property
 -happens to be at the
root

What is the only way to
fix this?

6

3

1

2

1

0

6

3

1

0

6
0

6

3

1
0

1

0

Fix: Apply “Single Rotation”
•  Single rotation: The basic operation we’ll use to rebalance

–  Move child of unbalanced node into parent position
–  Parent becomes the “other” child (always okay in a BST!)
–  Other subtrees move in only way BST allows (next slide)

17

3

1 6
0 0

1
6

3

0

1

2

AVL Property violated at node 6

Child’s new-height = old-height-before-insert
1

The example generalized
•  Insertion into left-left grandchild causes an imbalance

–  1 of 4 possible imbalance causes (other 3 coming up!)
•  Creates an imbalance in the AVL tree (specifically a is imbalanced)

18

a

Z

Y

b

X

h h
h

h+1
h+2 a

Z

Y

b

X

h+1 h
h

h+2
h+3

The general left-left case
•  So we rotate at a

–  Move child of unbalanced node into parent position
–  Parent becomes the “other” child
–  Other sub-trees move in the only way BST allows:

•  using BST facts: X < b < Y < a < Z

19

•  A single rotation restores balance at the node
–  To same height as before insertion, so ancestors now balanced

a

Z

Y

b

X

h+1 h
h

h+2
h+3 b

Z Y

a
h+1 h h

h+1

h+2

X

Another example: insert(16)

20

10 4

22 8

15

 3 6

19

17 20

24

16

10 4

 8

15

 3 6

19

17

20 16

22

24

The general right-right case

•  Mirror image to left-left case, so you rotate the other way
–  Exact same concept, but need different code

21

a

Z Y

X

h

h
h+1

h+3

b
h+2 b

Z
Y

a

X

h h
h+1

h+1
h+2

Right-right Imbalance

22

10 4

22 8

15

 6

19

23 25

26

 3

24

Right-right Imbalance

23

10 4 22

 8

15

 6 19 23

25

26
 3

24

Two cases to go

Unfortunately, single rotations are not enough for insertions in the
left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

–  First wrong idea: single rotation like we did for left-left

24

3

6

1

0

1

 2

6

1 3

1

0 0

Violates order
property!

Two cases to go

Unfortunately, single rotations are not enough for insertions in the
left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

–  Second wrong idea: single rotation on the child of the
unbalanced node

25

3

6

1

0

1

 2

6

3

1

0

 1

 2

Still unbalanced!

Sometimes two wrongs make a right J
•  First idea violated the order property
•  Second idea didn’t fix balance
•  But if we do both single rotations, starting with the second, it

works! (And not just for this example.)
•  Double rotation:

1.  Rotate problematic child and grandchild
2.  Then rotate between self and new child

26

3

6

1

0

1

 2

6

3

1

0

 1

 2

1

0 0
1

3

6

The general right-left case

27

a

X

b

c
h-1

h
h

h

V
U

h+1
h+2

h+3

Z

a

X

c

h-1
h+1 h

h

V
U

h+2
h+3

Z

b

h

c

X

h-1

h+1
h

h+1

V U

h+2

Z

b

h

a
h

Comments
•  Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert
–  So no ancestor in the tree will need rebalancing

•  Does not have to be implemented as two rotations; can just do:

28

a

X

b

c
h-1

h
h

h

V
U

h+1
h+2

h+3

Z

c

X

h-1

h
+1 h

h+1

V U

h+2

Z

b

h

a
h

Easier to remember than you may think:
 Move c to grandparent’s position

 Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

•  Mirror image of right-left
–  Again, no new concepts, only new code to write

29

a

h-1

h

hh

V U

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h
+1 h

h+1

V U

h+2

Z

a

h

b
h

Insert, summarized

•  Insert as in a BST

•  Check back up path for imbalance, which will be 1 of 4 cases:
–  Node’s left-left grandchild is too tall
–  Node’s left-right grandchild is too tall
–  Node’s right-left grandchild is too tall
–  Node’s right-right grandchild is too tall

•  Only one case occurs because tree was balanced before insert

•  After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
–  So all ancestors are now balanced

30

AVL Trees efficiency

•  Worst-case complexity of find: O(log n)

–  Tree is balanced

•  Worst-case complexity of insert: O(log n)
–  Tree starts balanced
–  A rotation is O(1) and there’s an O(log n) path to root
–  Tree ends balanced

•  Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…

31

Pros and Cons of AVL Trees

32

Arguments for AVL trees:

1.  All operations logarithmic worst-case because trees are always

balanced
2.  Height balancing adds no more than a constant factor to the speed

of insert and delete

Arguments against AVL trees:

1.  Difficult to program & debug [but done once in a library!]
2.  More space for height field
3.  Asymptotically faster but rebalancing takes a little time
4.  If amortized (later, I promise) logarithmic time is enough, use splay

trees (also in the text)

