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Observation 
•  BST: the shallower the better! 
 
Solution:  Require a Balance Condition that 
1.  Ensures depth is always O(log n)  
2.  Is efficient to maintain              
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How can we make a BST efficient?  

•  When we build the tree, make sure it’s balanced.  
 

•  BUT…Balancing a tree only at build time is insufficient. 
 

•  We also need to also keep the tree balanced as we perform 
operations. 



Potential Balance Conditions 
1.  Left and right subtrees of the root 

have equal number of nodes 

2.  Left and right subtrees of the root 
have equal height 

Too weak! 
Height mismatch example: 

Too weak! 
Double chain example: 
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Potential Balance Conditions 
3.  Left and right subtrees of every node 

have equal number of nodes 

4.  Left and right subtrees of every node 
have equal height 

Too strong! 
Only perfect trees (2n – 1 nodes) 

Too strong! 
Only perfect trees (2n – 1 nodes) 
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The AVL Balance Condition 
Left and right subtrees of every node have heights differing by at most 1 
 
Definition:  balance(node) = height(node.left) – height(node.right) 
 
AVL property:   for every node x,   –1 ≤ balance(x) ≤ 1    

•  Ensures small depth 
–  Will prove this by showing that an AVL tree of height 

h must have a number of nodes exponential in h  
 (i.e. height must be logarithmic in number of nodes) 

•  Efficient to maintain 
–  Using single and double rotations 



Announcements	  

•  HW2	  due	  10:59	  on	  Friday	  via	  Dropbox.	  
•  Midterm	  next	  Friday,	  sample	  midterms	  posted	  
online	  

•  Last	  lecture:	  Binary	  Search	  Trees 
•  Today…	  AVL	  Trees	  
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BST:	  Efficiency	  of	  Opera8ons?	  
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•  Problem:	  operaQons	  may	  be	  inefficient	  if	  BST	  is	  
unbalanced.	  	  

	  
•  Find,	  insert,	  delete	  

–  O(n)	  in	  the	  worst	  case	  
•  BuildTree	  

–  O(n2)	  in	  the	  worst	  case	  
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The AVL Tree Data Structure 
An AVL tree is a self-balancing binary search tree. 
 
Structural properties 

1.  Binary tree property (same as BST) 
2.  Order property (same as for BST) 

 
3.  Balance property: 

balance of every node is between -1 and 1 
balance(node) = height(node.left) – height(node.right) 
 
Result: Worst-case depth is O(log n)  
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Is this an AVL tree? 
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Yes! Because the left and right subtrees of 
every node have heights differing by at most 1 
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Is this an AVL tree? 
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Nope! The left and right subtrees of some nodes 
(e.g. 1, 4, 6) have heights that differ by more than 1 
 



Good news 

Because height of AVL tree is O(log(n)), then find is O(log n) 
 
 

But as we insert and delete elements, we need to: 
1.  Track balance 
2.  Detect imbalance 
3.  Restore balance 
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An AVL Tree 
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AVL tree operations 
•  AVL find:  

–  Same as BST find 

•  AVL insert:  
–  First BST insert, then check balance and potentially “fix” the 

AVL tree 
–  Four different imbalance cases 

•  AVL delete:  
–  The “easy way” is lazy deletion 
–  Otherwise, do the deletion and then check for several imbalance 

cases (we will skip this) 
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Insert: detect potential imbalance 

1.  Insert the new node as in a BST (a new leaf) 
2.  For each node on the path from the root to the new leaf, the 

insertion may (or may not) have changed the node’s height 
3.  So after insertion in a subtree, detect height imbalance and 

perform a rotation to restore balance at that node 
4.  Always look for the deepest node that is unbalanced 
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Insert: detect potential imbalance 

1.  Insert the new node as in a BST (a new leaf) 
2.  For each node on the path from the root to the new leaf, the 

insertion may (or may not) have changed the node’s height 
3.  So after insertion in a subtree, detect height imbalance and 

perform a rotation to restore balance at that node 
4.  Always look for the deepest node that is unbalanced 
 
 

15 

a 

Z 

Y 

b 

X 

h+1 h 
h 

h+2 
h+3 



Case #1: Example 
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Insert(6) 
Insert(3) 
Insert(1) 
 
Third insertion violates 

balance property 
 -happens to be at the 
root 

What is the only way to 
fix this?  
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Fix: Apply “Single Rotation” 
•  Single rotation: The basic operation we’ll use to rebalance 

–  Move child of unbalanced node into parent position 
–  Parent becomes the “other” child (always okay in a BST!) 
–  Other subtrees move in only way BST allows (next slide) 
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The example generalized 
•  Insertion into left-left grandchild causes an imbalance 

–  1 of 4 possible imbalance causes (other 3 coming up!) 
•  Creates an imbalance in the AVL tree (specifically a  is imbalanced) 
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The general left-left case 
•  So we rotate at a 

–  Move child of unbalanced node into parent position 
–  Parent becomes the “other” child 
–  Other sub-trees move in the only way BST allows:  

•  using BST facts: X < b < Y < a < Z 
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•  A single rotation restores balance at the node 
–  To same height as before insertion, so ancestors now balanced 
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Another example: insert(16) 
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The general right-right case 

•  Mirror image to left-left case, so you rotate the other way 
–  Exact same concept, but need different code 
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Right-right Imbalance 
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Right-right Imbalance 
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Two cases to go 

Unfortunately, single rotations are not enough for insertions in the 
left-right subtree or the right-left subtree 

 
Simple example:  insert(1), insert(6), insert(3) 

–  First wrong idea: single rotation like we did for left-left 
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Two cases to go 

Unfortunately, single rotations are not enough for insertions in the 
left-right subtree or the right-left subtree 

 
Simple example:  insert(1), insert(6), insert(3) 

–  Second wrong idea: single rotation on the child of the 
unbalanced node 
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Sometimes two wrongs make a right J 
•  First idea violated the order property 
•  Second idea didn’t fix balance 
•  But if we do both single rotations, starting with the second, it 

works!  (And not just for this example.) 
•  Double rotation:  

1.  Rotate problematic child and grandchild 
2.  Then rotate between self and new child 
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The general right-left case 
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Comments 
•  Like in the left-left and right-right cases, the height of the subtree 

after rebalancing is the same as before the insert 
–  So no ancestor in the tree will need rebalancing 

•  Does not have to be implemented as two rotations; can just do: 
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Easier to remember than you may think: 
 Move c to grandparent’s position 

     Put a, b, X, U, V, and Z in the only legal positions for a BST 



The last case: left-right 

•  Mirror image of right-left 
–  Again, no new concepts, only new code to write 
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Insert, summarized 

•  Insert as in a BST 

•  Check back up path for imbalance, which will be 1 of 4 cases: 
–  Node’s left-left grandchild is too tall 
–  Node’s left-right grandchild is too tall 
–  Node’s right-left grandchild is too tall 
–  Node’s right-right grandchild is too tall 

•  Only one case occurs because tree was balanced before insert 

•  After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion 
–  So all ancestors are now balanced 
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AVL Trees efficiency 
 
•  Worst-case complexity of find: O(log n) 

–  Tree is balanced 
 

•  Worst-case complexity of insert: O(log n) 
–  Tree starts balanced 
–  A rotation is O(1) and there’s an O(log n) path to root 
–  Tree ends balanced 

•  Worst-case complexity of buildTree: O(n log n) 
 
Takes some more rotation action to handle delete… 
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Pros and Cons of AVL Trees 
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Arguments for AVL trees: 
 
1.  All operations logarithmic worst-case because trees are always  

balanced 
2.  Height balancing adds no more than a constant factor to the speed 

of insert and delete 
 
Arguments against AVL trees: 
 
1.  Difficult to program & debug [but done once in a library!] 
2.  More space for height field 
3.  Asymptotically faster but rebalancing takes a little time 
4.  If amortized (later, I promise) logarithmic time is enough, use splay 

trees (also in the text) 


