
CSE373: Data Structures & Algorithms

Lecture 5: Dictionary ADTs; Binary Trees

Lauren Milne
Summer 2015

Today’s Outline

Announcements
-  Homework 1 due TODAY at 10:59pm J
-  Homework 2 out

-  Due online next Friday 10:59 pm

Today’s Topics

•  Finish Asymptotic Analysis
•  Dictionary ADT (a.k.a. Map): associate keys with values

–  Extremely common
•  Binary Trees

2

Summary of Asymptotic Analysis

Analysis can be about:

•  The problem or the algorithm (usually algorithm)

•  Time or space (usually time)

•  Best-, worst-, or average-case (usually worst)

•  Upper-, lower-, or tight-bound (usually upper)

•  The most common thing we will do is give an O upper bound to

the worst-case running time of an algorithm.

3

Addendum: Timing vs. Big-O Summary

•  Big-O
–  Examine the algorithm itself, not the implementation
–  Reason about performance as a function of n
–  For small n, an algorithm with worse asymptotic complexity

might be faster

•  Timing
–  Compare implementations
–  Focus on data sets other than worst case
–  Determine what the constants actually are

4

Let’s take a breath

•  So far we’ve covered
–  Simple ADTs: stacks, queues, lists
–  Some math (proof by induction)
–  Algorithm analysis
–  Asymptotic notation (Big-Oh)

•  Coming up….
–  Many more ADTs!

•  Starting with dictionaries

5

The Dictionary (a.k.a. Map) ADT

•  Data:
–  set of (key, value) pairs
–  keys must be comparable

•  Operations:

–  insert(key,value)
–  find(key)
–  delete(key)
–  …

6

•  lauren
Lauren Milne

 OH: Mon 1.30-2.30
 …

•  mert
Mert Saglam

 OH: Wed 4-5
 …

•  Mauricio
 Mauricio Hernandez
 OH: Fri 12:00-1:00
 …

insert(lauren, ….)

find(mert)
Mert Saglam, …

A Modest Few Uses

Used to store information with some key and retrieve it efficiently
–  Lots of programs do that!

•  Search: phone directories
•  Networks: router tables
•  Operating systems: page tables
•  Compilers: symbol tables
•  Databases: dictionaries with other nice properties
•  Biology: genome maps
•  …

 Possibly the most widely used ADT

7

Simple implementations
For dictionary with n key/value pairs

 insert find delete
•  Unsorted linked-list

•  Unsorted array

•  Sorted linked list

•  Sorted array

* Unless we need to check for duplicates

We’ll see a Binary Search Tree (BST) probably does better
 but not in the worst case (unless we keep it balanced)

8

O(1)* O(n) O(n)

O(n) O(n)

O(n) O(n) O(n)

O(1)*

O(n) O(n) O(log n)

Lazy Deletion

A general technique for making delete as fast as find:
–  Instead of actually removing the item just mark it deleted

Pros:
–  Simpler
–  Can do removals later in batches
–  If re-added soon thereafter, just unmark the deletion

Cons:
–  Extra space for the “is-it-deleted” flag
–  Data structure full of deleted nodes wastes space
–  May complicate other operations

9

10 12 24 30 41 42 44 45 50
ü û ü ü ü ü û ü ü

Better dictionary data structures

There are many good data structures for (large) dictionaries

1.  Binary trees
2.  AVL trees

–  Binary search trees with guaranteed balancing

3.  B-Trees
–  Also always balanced, but different and shallower
–  B-Trees are not the same as Binary Trees

•  B-Trees generally have large branching factor

4.  Hashtables
–  Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

10

Tree terms

11

A

E

B

D F

C

G

I H

L J M K N

Tree T

Root (tree)
Leaves (tree)
Children (node)
Parent (node)
Siblings (node)
Ancestors (node)
Descendents (node)
Subtree (node)

Depth (node)
Height (tree)
Degree (node)
Branching factor (tree)

More tree terms

•  There are many kinds of trees
–  Binary trees, linked lists, etc…

•  There are many kinds of binary trees
–  binary search tree, binary heaps

•  A tree can be balanced or not
–  A balanced tree with n nodes has a height of O(log n)
–  Use different “balance conditions” to achieve this

12

Kinds of trees

Certain terms define trees with specific structure

•  Binary tree: Each node has at most 2 children (branching factor 2)
•  n-ary tree: Each node has at most n children (branching factor n)
•  Perfect tree: Each row completely full
•  Complete tree: Each row completely full except maybe the bottom

row, which is filled from left to right

13

What is the height of a perfect binary tree with n nodes?
A complete 14-ary tree?

Binary Trees

•  Binary tree: Each node has at most 2 children (branching factor 2)

•  Binary tree is
–  A root (with data)
–  A left subtree (may be empty)
–  A right subtree (may be empty)

•  Representation:

A

B

D E

C

F

H G

J I

Data
right

pointer
left

pointer

•  For a dictionary, data will include a
key and a value

14

Binary Tree Representation

15

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

–  max # of nodes:

–  max # of leaves:

–  min # of leaves:

–  min # of nodes:

2h+1-1

2h

1

h + 1

For n nodes, we cannot do better than O(log n)
height and we want to avoid O(n) height

16

Calculating height

What is the height of a tree with root root?

17

int treeHeight(Node root) {

 ???

}

Calculating height
What is the height of a tree with root root?

18

int treeHeight(Node root) {
 if(root == null)
 return -1;
 return 1 + max(treeHeight(root.left),
 treeHeight(root.right));
}

Running time for tree with n nodes:
O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending
nodes; much easier to use recursion’s call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

•  Pre-order: root, left subtree, right subtree

•  In-order: left subtree, root, right subtree

•  Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

19

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

20

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

21

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

22

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

23

 = current node = processing (on the call stack)

 = completed node

A A

A

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

24

 = current node = processing (on the call stack)

 = completed node

A A

A

✓

✓

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

25

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

26

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

27

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

28

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

✓

✓

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A

B

D E

C

F G

29

 = current node = processing (on the call stack)

 = completed node

A A

A

 = current node = processing (on the call stack)

 = completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

✓

✓ ✓

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

•  Pre-order: root, left subtree, right subtree

 + * 2 4 5

•  In-order: left subtree, root, right subtree
 2 * 4 + 5

•  Post-order: left subtree, right subtree, root
 2 4 * 5 +

+

*

2 4

5

(an expression tree)

30

