CSE373: Data Structures and Algorithms Lecture 4: Asymptotic Analysis

Lauren Milne

Summer 2015

Administrivia

- Questions on Homework 1? Due Wednesday at 10:59 pm.
- TA Session tomorrow, mostly on induction
- Today
- Algorithmic Analysis!

Algorithm Analysis

- As the size of an algorithm's input grows, we want to know
- How long it takes to run (time)
- How much room it takes to run (space)
- We use Big-O notation to compare algorithm runtimes
- Ignore constants and lower order terms
- Independent of implementation
- Big-O of ($n^{3}+10 \log ^{2} n+5$)?
- Make assumptions
- "basic" operations take constant time
- Always analyze worst possible case
- Slower branch of conditional
- Worst possible input

Example

```
2 2
```

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```


Linear search

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array
Best case?

```
// requires array is sorted
```

// returns whether k is in array
boolean find(int[]arr, int k) \{
for (int i=0; $i<a r r . l e n g t h ; ~++i)$
if (arr[i] == k)
return true;
return false;
\}
k is in $\operatorname{arr[0]}$
c1 steps
$=O(1)$

Worst case?
k is not in arr
c2*(arr.length)
$=$ O(arr.length)

Binary search

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array

```
// requires sorted array
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```


Binary search

```
Best case:
    c1 steps = O(1)
Worst case:
    T(n)=c2 + T(n/2) where c2 is constant and n is hi-lo
    O(log}n)\mathrm{ where }n\mathrm{ is arr.length (recurrence equation)
// requires sorted array
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```


Solving Recurrence Relations

1. Determine the recurrence relation and the base case.

$$
-\quad T(n)=c 2+T(n / 2) \quad T(1)=c 1
$$

What is $T(n / 2)$?

What is $T(n / 4)$?

Solving Recurrence Relations

1. Determine the recurrence relation and the base case.

$$
-\quad T(n)=c 2+T(n / 2) \quad T(1)=c 1
$$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions " k ".

$$
\begin{aligned}
-\quad T(n) & =c 2+c 2+T(n / 4) \\
& =c 2+c 2+c 2+T(n / 8) \\
& =\ldots \\
& =c 2(k)+T\left(n /\left(2^{k}\right)\right)
\end{aligned}
$$

3. Find a closed-form expression: find the number of expansions to reach the base case

$$
\begin{array}{ll}
- & n /\left(2^{\mathrm{k}}\right)=1 \text { means } n=2^{\mathrm{k}} \text { means } \mathrm{k}=\log _{2} n \\
-\quad \text { So } T(n)=c 2 \log _{2} n+T(1) \\
\text { - } \quad \text { So } T(n)=c 2 \log _{2} n+c 1 \\
\text { - } \quad \text { So } T(n) \text { is } O(\log n)
\end{array}
$$

Ignoring constant factors

- So binary search is $O(\log n)$ and linear is $O(n)$
- But which is faster?
- Depends on constant factors
- How many assignments, additions, etc. for each n
- E.g. $T(n)=5,000,000 n$
vs. $T(n)=5 n^{2}$
- And could depend on overhead unrelated to n
- E.g. $T(n)=5,000,000+\log n$ vs. $T(n)=10+n$
- But there exists some n_{0} such that for all $n>\mathrm{n}_{0}$ binary search wins

Example

- Let's try to "help" linear search
- 100x faster computer
- 3x faster compiler/language
- $2 x$ smarter programmer (eliminate half the work)
- Each iteration is 600x as fast as in binary search

Big-O, formally

Definition:
$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exists positive constants c and n_{0} such that $\mathrm{g}(n) \leq c \mathrm{f}(n) \quad$ for all $n \geq n_{0}$

Big-O, formally

Definition:
$g(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exists positive constants c and n_{0} such that $\mathrm{g}(n) \leq c \mathrm{f}(n) \quad$ for all $n \geq n_{0}$

- To show $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$,
- pick a c large enough to "cover the constant factors"
- n_{0} large enough to "cover the lower-order terms"
- Example:
- Let $\mathrm{g}(n)=3 n^{2}+17$ and $\mathrm{f}(n)=n^{2}$

What could we pick for c and n_{0} ?
$c=5$ and $n_{0}=10$
$\left(3^{*} 10^{2}\right)+17 \leq 5^{*} 10^{2}$ so $3 n^{2}+17$ is $\mathrm{O}\left(n^{2}\right)$

Example 1, using formal definition

- Let $\mathrm{g}(n)=1000 n$ and $\mathrm{f}(n)=n^{2}$
- To prove $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$, find a valid c and n_{0}
- The "cross-over point" is $n=1000$
- $\mathrm{g}(n)=1000 * 1000$ and $\mathrm{f}(n)=1000^{2}$
- So we can choose $n_{0}=1000$ and $c=1$
- Many other possible choices, e.g., larger n_{0} and/or c

Definition: $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

Example 2, using formal definition

- Let $g(n)=n^{4}$ and $f(n)=2^{n}$
- To prove $g(n)$ is in $O(f(n))$, find a valid c and n_{0}
- We can choose $n_{0}=20$ and $c=1$
- $g(n)=20^{4}$ vs. $f(n)=1 * 2^{20}$

Definition: $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist positive constants c and n_{0} such that

$$
\mathrm{g}(n) \leq c \mathrm{f}(n) \quad \text { for all } n \geq n_{0}
$$

What's with the c ?

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Consider:

$$
\begin{aligned}
& g(n)=7 n+5 \\
& f(n)=n
\end{aligned}
$$

- These have the same asymptotic behavior (linear)
- So $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ even through $\mathrm{g}(n)$ is always larger
- The c allows us to provide a coefficient so that $\mathrm{g}(n) \leq c \mathrm{f}(n)$
- In this example:
- To prove $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$, have $c=12, n_{0}=1$ $(7 * 1)+5 \leq 12 * 1$

What you can drop

- Eliminate coefficients because we don't have units anyway
- $3 n^{2}$ versus $5 n^{2}$ doesn't mean anything when we have not specified the cost of constant-time operations
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
- n^{3} is not $O\left(n^{2}\right)$
-3^{n} is not $O\left(2^{n}\right)$

More Asymptotic Notation

- Upper bound: $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- $g(n)$ is in $O(f(n))$ if there exist constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$
- Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
- $\mathrm{g}(n)$ is in $\Omega(\mathrm{f}(n))$ if there exist constants c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$
- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$
- $g(n)$ is in $\theta(f(n))$ if both $g(n)$ is in $O(f(n))$ and $\mathrm{g}(n)$ is in $\Omega(\mathrm{f}(n))$

Correct terms, in theory

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$

- A linear algorithm is in both $O(n)$ and $O\left(n^{5}\right)$
- Better to say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
- For all c, there exists an n_{0} such that... \leq
- Example: array sum is $o\left(n^{2}\right)$ but not $o(n)$
- "little-omega": intersection of "big-Omega" and not "big-Theta"
- For all c, there exists an n_{0} such that... \geq
- Example: array sum is $\omega(\log n)$ but not $\omega(n)$

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)
- We generally will give an O upper bound to the worst-case running time of an algorithm

Big-O Caveats

- Asymptotic complexity focuses on behavior for large n
- You can be misled about trade-offs using it
- Example: $n^{1 / 10}$ vs. $\log n$
- Asymptotically $n^{1 / 10}$ grows more quickly
- "Cross-over" point is around 5 * 10^{17}
- So for any smaller input, prefer $n^{1 / 10}$
- For small n, an algorithm with worse asymptotic complexity might be faster

Addendum: Timing vs. Big-O Summary

- Big-O
- Examine the algorithm itself, not the implementation
- Reason about performance as a function of n
- Timing
- Compare implementations
- Focus on data sets other than worst case
- Determine what the constants actually are

Bubble Sort

```
private static void bubbleSort(int[] intArray) {
    int n = intArray.length;
    int temp = 0;
    for(int i=0; i < n; i++){
    for(int j=1; j < (n-i); j++){ 1 n-2
        if(intArray[j-1] > intArray[j]){
            //swap the elements!
            temp = intArray[j-1];
            intArray[j-1] = intArray[j];
            intArray[j] = temp;
        }
        }
    }
}
Number of iterations
0+1+2+3+..+(n-2)+(n-1)
=n(n-1)/2
```

Each iteration takes c1
$O\left(n^{2}\right)$

