
CSE373: Data Structures and Algorithms

Lecture 4: Asymptotic Analysis

Lauren Milne
Summer 2015

Administrivia

•  Questions on Homework 1? Due Wednesday at 10:59 pm.

•  TA Session tomorrow, mostly on induction

•  Today
–  Algorithmic Analysis!

2

Algorithm Analysis

•  As the size of an algorithm’s input grows, we want to know
–  How long it takes to run (time)
–  How much room it takes to run (space)

•  We use Big-O notation to compare algorithm runtimes
–  Ignore constants and lower order terms
–  Independent of implementation
–  Big-O of (n3 + 10nlog2n + 5)?

•  Make assumptions
–  “basic” operations take constant time

•  Always analyze worst possible case
–  Slower branch of conditional
–  Worst possible input

3

Example

Find an integer in a sorted array

4

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 ???
}

Linear search

Find an integer in a sorted array

5

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
}

Best case?
k is in arr[0]
c1 steps
= O(1)

Worst case?
k is not in arr
c2*(arr.length)
= O(arr.length)

Binary search

Find an integer in a sorted array

6

2 3 5 16 37 50 73 75 126

// requires sorted array
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Binary search

7

// requires sorted array
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2;
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Best case:
 c1 steps = O(1)

Worst case:
 T(n) = c2 + T(n/2) where c2 is constant and n is hi-lo
O(log n) where n is arr.length (recurrence equation)

Solving Recurrence Relations

1.  Determine the recurrence relation and the base case.
–  T(n) = c2 + T(n/2) T(1) = c1

What is T(n/2)?

What is T(n/4)?

8

Solving Recurrence Relations

1.  Determine the recurrence relation and the base case.
–  T(n) = c2 + T(n/2) T(1) = c1

2.  “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions “k”.

–  T(n) = c2 + c2 + T(n/4)
 = c2 + c2 + c2 + T(n/8)

 = …
 = c2(k) + T(n/(2k))

3.  Find a closed-form expression: find the number of expansions to
reach the base case

–  n/(2k) = 1 means n = 2k means k = log2 n
–  So T(n) = c2 log2 n + T(1)
–  So T(n) = c2 log2 n + c1
–  So T(n) is O(log n)

9

Ignoring constant factors

•  So binary search is O(log n) and linear is O(n)
–  But which is faster?

•  Depends on constant factors
–  How many assignments, additions, etc. for each n

•  E.g. T(n) = 5,000,000n vs. T(n) = 5n2
–  And could depend on overhead unrelated to n

•  E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n

•  But there exists some n0 such that for all n > n0 binary search wins

10

Example
•  Let’s try to “help” linear search

–  100x faster computer
–  3x faster compiler/language
–  2x smarter programmer (eliminate half the work)
–  Each iteration is 600x as fast as in binary search

11

Big-O, formally
Definition:

 g(n) is in O(f(n)) if there exists
 positive constants c and n0 such that
 g(n) ≤ c f(n) for all n ≥ n0

12

Big-O, formally
Definition:

 g(n) is in O(f(n)) if there exists
 positive constants c and n0 such that
 g(n) ≤ c f(n) for all n ≥ n0

•  To show g(n) is in O(f(n)),
–  pick a c large enough to “cover the constant factors”
–  n0 large enough to “cover the lower-order terms”

•  Example:
–  Let g(n) = 3n2+17 and f(n) = n2

 What could we pick for c and n0?
 c = 5 and n0 = 10
 (3*102)+17 ≤ 5*102 so 3n2+17 is O(n2)

13

Example 1, using formal definition

•  Let g(n) = 1000n and f(n) = n2

–  To prove g(n) is in O(f(n)), find a valid c and n0
–  The “cross-over point” is n=1000

•  g(n) = 1000*1000 and f(n) = 10002
–  So we can choose n0=1000 and c=1

•  Many other possible choices, e.g., larger n0 and/or c

14

Definition: g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

Example 2, using formal definition

•  Let g(n) = n4 and f(n) = 2n

–  To prove g(n) is in O(f(n)), find a valid c and n0
–  We can choose n0=20 and c=1

•  g(n) = 204 vs. f(n) = 1*220

15

Definition: g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

What’s with the c?

•  The constant multiplier c is what allows functions that differ only in
their largest coefficient to have the same asymptotic complexity

•  Consider:
 g(n) = 7n+5
 f(n) = n

–  These have the same asymptotic behavior (linear)
•  So g(n) is in O(f(n)) even through g(n) is always larger
•  The c allows us to provide a coefficient so that g(n) ≤ c f(n)

–  In this example:
•  To prove g(n) is in O(f(n)), have c = 12, n0 = 1

 (7*1)+5 ≤ 12*1

16

What you can drop

•  Eliminate coefficients because we don’t have units anyway
–  3n2 versus 5n2 doesn’t mean anything when we have not

specified the cost of constant-time operations

•  Eliminate low-order terms because they have vanishingly small
impact as n grows

•  Do NOT ignore constants that are not multipliers
–  n3 is not O(n2)
–  3n is not O(2n)

17

More Asymptotic Notation

•  Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)
–  g(n) is in O(f(n)) if there exist constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

•  Lower bound: Ω(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)
–  g(n) is in Ω(f(n)) if there exist constants c and n0 such that

 g(n) ≥ c f(n) for all n ≥ n0

•  Tight bound: θ(f(n)) is the set of all functions asymptotically
equal to f(n)
–  g(n) is in θ(f(n)) if both g(n) is in O(f(n)) and

 g(n) is in Ω(f(n))

18

Correct terms, in theory

A common error is to say O(f(n)) when you mean θ(f(n))
–  A linear algorithm is in both O(n) and O(n5)
–  Better to say it is θ(n)
–  That means that it is not, for example O(log n)

Less common notation:
–  “little-oh”: intersection of “big-Oh” and not “big-Theta”

•  For all c, there exists an n0 such that… ≤
•  Example: array sum is o(n2) but not o(n)

–  “little-omega”: intersection of “big-Omega” and not “big-Theta”
•  For all c, there exists an n0 such that… ≥
•  Example: array sum is ω(log n) but not ω(n)

19

Summary

Analysis can be about:

•  The problem or the algorithm (usually algorithm)

•  Time or space (usually time)

•  Best-, worst-, or average-case (usually worst)

•  Upper-, lower-, or tight-bound (usually upper or tight)

•  We generally will give an O upper bound to the worst-case

running time of an algorithm

20

Big-O Caveats

•  Asymptotic complexity focuses on behavior for large n

•  You can be misled about trade-offs using it

•  Example: n1/10 vs. log n

–  Asymptotically n1/10 grows more quickly
–  “Cross-over” point is around 5 * 1017

–  So for any smaller input, prefer n1/10

•  For small n, an algorithm with worse asymptotic complexity

might be faster

21

Addendum: Timing vs. Big-O Summary

•  Big-O
–  Examine the algorithm itself, not the implementation
–  Reason about performance as a function of n

•  Timing
–  Compare implementations
–  Focus on data sets other than worst case
–  Determine what the constants actually are

22

Bubble Sort

23

private static void bubbleSort(int[] intArray) {
 int n = intArray.length;
 int temp = 0;
 for(int i=0; i < n; i++){

for(int j=1; j < (n-i); j++){
 if(intArray[j-1] > intArray[j]){

//swap the elements!
temp = intArray[j-1];
intArray[j-1] = intArray[j];
intArray[j] = temp;

 }
}

 }
}

i j
0 n-1
1 n-2
2 n-3
… …
n-2 1
n-1 0

Number of iterations
0+1+2+3+..+(n-2)+(n-1)
= n(n-1)/2

Each iteration takes c1

O(n2)

