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Administrivia 

•  Questions on Homework 1? Due Wednesday at 10:59 pm. 

•  TA Session tomorrow, mostly on induction 

•  Today 
–  Algorithmic Analysis! 
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Algorithm Analysis 

•  As the size of an algorithm’s input grows, we want to know 
–  How long it takes to run (time) 
–  How much room it takes to run (space) 

•  We use Big-O notation to compare algorithm runtimes 
–  Ignore constants and lower order terms 
–  Independent of implementation 
–  Big-O of (n3 + 10nlog2n + 5)? 

•  Make assumptions 
–  “basic” operations take constant time 

•  Always analyze worst possible case 
–  Slower branch of conditional 
–  Worst possible input 
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Example 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   ??? 
} 



Linear search 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   for(int i=0; i < arr.length; ++i) 
      if(arr[i] == k) 
        return true; 
   return false; 
} 

Best case? 
k is in arr[0]  
c1 steps 
= O(1) 
 
Worst case? 
k is not in arr 
c2*(arr.length) 
= O(arr.length) 
      
 



Binary search 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires sorted array      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    



Binary search 
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// requires sorted array   
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case:  
 c1 steps = O(1) 

Worst case:  
 T(n) = c2 + T(n/2) where c2 is constant and n is hi-lo 
O(log n) where n is arr.length (recurrence equation) 



Solving Recurrence Relations 

1.  Determine the recurrence relation and the base case. 
–  T(n) = c2 + T(n/2)   T(1) = c1 

 
What is T(n/2)? 
 
 
 
What is T(n/4)? 
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Solving Recurrence Relations 

1.  Determine the recurrence relation and the base case. 
–  T(n) = c2 + T(n/2)   T(1) = c1 

2.  “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions “k”. 

–  T(n)  = c2 + c2 + T(n/4) 
          = c2 + c2 + c2 + T(n/8) 

                 = … 
                 = c2(k) + T(n/(2k)) 

3.  Find a closed-form expression: find the number of expansions to 
reach the base case 

–  n/(2k) = 1 means n = 2k  means k = log2 n 
–  So T(n) = c2 log2 n + T(1)  
–  So T(n) = c2 log2 n + c1   
–  So T(n) is O(log n) 
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Ignoring constant factors 

•  So binary search is O(log n) and linear is O(n)  
–  But which is faster? 

•  Depends on constant factors 
–  How many assignments, additions, etc. for each n 

•  E.g. T(n) = 5,000,000n  vs. T(n) = 5n2  
–  And could depend on overhead unrelated to n 

•  E.g. T(n) = 5,000,000 + log n  vs. T(n) = 10 + n 
 

•  But there exists some n0 such that for all n > n0 binary search wins 
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Example 
•  Let’s try to “help” linear search 

–  100x faster computer 
–  3x faster compiler/language  
–  2x smarter programmer (eliminate half the work) 
–  Each iteration is 600x as fast as in binary search 
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Big-O, formally 
Definition:   

  g(n) is in O( f(n) ) if there exists  
  positive constants c and n0 such that  
  g(n) ≤  c f(n)  for all n ≥ n0 
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Big-O, formally 
Definition:  

  g(n) is in O( f(n) ) if there exists  
  positive constants c and n0 such that  
  g(n) ≤  c f(n)  for all n ≥ n0 

 

•  To show g(n) is in O( f(n) ),  
–  pick a c large enough to “cover the constant factors”   
–  n0 large enough to “cover the lower-order terms” 

•  Example: 
–  Let g(n) = 3n2+17 and f(n) = n2 

  What could we pick for c and n0? 
  c = 5 and n0 = 10  
  (3*102)+17 ≤  5*102  so  3n2+17 is O(n2) 
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Example 1, using formal definition 

•  Let g(n) = 1000n and f(n) = n2 

–  To prove g(n) is in O(f(n)), find a valid c and n0  
–  The “cross-over point” is n=1000 

•   g(n) = 1000*1000 and f(n) = 10002  
–  So we can choose n0=1000 and c=1 

•  Many other possible choices, e.g., larger n0 and/or c 
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Definition:  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  

 
  g(n) ≤  c f(n)  for all n ≥ n0 



Example 2, using formal definition 

•  Let g(n) = n4 and f(n) = 2n 

–  To prove g(n) is in O(f(n)), find a valid c and n0  
–  We can choose n0=20 and c=1 

•   g(n) = 204 vs. f(n) = 1*220 
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Definition:  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  

 
  g(n) ≤  c f(n)  for all n ≥ n0 



What’s with the c? 

•  The constant multiplier c is what allows functions that differ only in 
their largest coefficient to have the same asymptotic complexity 

•  Consider:  
 g(n) = 7n+5  
 f(n) = n 

–  These have the same asymptotic behavior (linear) 
•  So g(n) is in O(f(n)) even through g(n) is always larger 
•  The c allows us to provide a coefficient so that g(n) ≤  c f(n) 
 

–  In this example:  
•  To prove g(n) is in O(f(n)), have c = 12, n0 = 1 

 (7*1)+5 ≤ 12*1 
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What you can drop 

•  Eliminate coefficients because we don’t have units anyway 
–  3n2  versus 5n2  doesn’t mean anything when we have not 

specified the cost of constant-time operations 
 

•  Eliminate low-order terms because they have vanishingly small 
impact as n grows 

•  Do NOT ignore constants that are not multipliers 
–  n3 is not O(n2) 
–  3n is not O(2n) 
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More Asymptotic Notation 

•  Upper bound: O( f(n) ) is the set of all functions asymptotically 
less than or equal to f(n) 
–  g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n) ≤  c f(n) for all n ≥ n0 

•  Lower bound: Ω( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n) 
–  g(n) is in Ω( f(n) ) if there exist  constants c and n0 such that  

  g(n) ≥  c f(n) for all n ≥ n0 

•  Tight bound: θ( f(n) ) is the set of all functions asymptotically 
equal to f(n) 
–  g(n) is in θ( f(n) ) if  both  g(n) is in O( f(n) ) and 

    g(n) is in Ω( f(n) )  
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Correct terms, in theory 

A common error is to say O( f(n) ) when you mean θ( f(n) ) 
–  A linear algorithm is in both O(n) and  O(n5)  
–  Better to say it is θ(n) 
–  That means that it is not, for example O(log n) 

Less common notation: 
–  “little-oh”: intersection of “big-Oh” and not “big-Theta” 

•  For all c, there exists an n0 such that… ≤ 
•  Example: array sum is o(n2) but not o(n) 

–  “little-omega”: intersection of “big-Omega” and not “big-Theta” 
•  For all c, there exists an n0 such that… ≥ 
•  Example: array sum is ω(log n) but not ω(n) 
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Summary 

Analysis can be about: 

•  The problem or the algorithm (usually algorithm) 

•  Time or space (usually time) 

•  Best-, worst-, or average-case (usually worst) 

•  Upper-, lower-, or tight-bound  (usually upper or tight) 

•  We generally will give an O upper bound to the worst-case 

running time of an algorithm 
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Big-O Caveats 

•  Asymptotic complexity focuses on behavior for large n  

•  You can be misled about trade-offs using it 
 
•  Example: n1/10 vs. log n 

–  Asymptotically n1/10 grows more quickly 
–  “Cross-over” point is around 5 * 1017 

–  So for any smaller input, prefer n1/10 

 
•  For small n, an algorithm with worse asymptotic complexity 

might be faster 
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Addendum: Timing vs. Big-O Summary 

•  Big-O 
–  Examine the algorithm itself, not the implementation 
–  Reason about performance as a function of n 

•  Timing  
–  Compare implementations 
–  Focus on data sets other than worst case 
–  Determine what the constants actually are 
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Bubble Sort 

23 

private static void bubbleSort(int[] intArray) {
   int n = intArray.length;
   int temp = 0;
   for(int i=0; i < n; i++){

for(int j=1; j < (n-i); j++){                      
   if(intArray[j-1] > intArray[j]){

//swap the elements!
temp = intArray[j-1];
intArray[j-1] = intArray[j];
intArray[j] = temp;

   }
}

   }
}                             
 
 

i      j 
0  n-1 
1  n-2 
2    n-3 
…  … 
n-2  1 
n-1  0 
 
Number of iterations 
0+1+2+3+..+(n-2)+(n-1)  
= n(n-1)/2  
 
Each iteration takes c1 
 
O(n2) 


