



# CSE373: Data Structures and Algorithms Lecture 4: Asymptotic Analysis

Lauren Milne Summer 2015

### Administrivia

- Questions on Homework 1? Due Wednesday at 10:59 pm.
- TA Session tomorrow, mostly on induction
- Today
  - Algorithmic Analysis!

# Algorithm Analysis

- As the size of an algorithm's input grows, we want to know
  - How long it takes to run (time)
  - How much room it takes to run (space)
- We use Big-O notation to compare algorithm runtimes
  - Ignore constants and lower order terms
  - Independent of implementation
  - Big-O of  $(n^3 + 10nlog^2n + 5)$ ?
- Make assumptions
  - "basic" operations take constant time
- Always analyze worst possible case
  - Slower branch of conditional
  - Worst possible input

### Example

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```

### Linear search

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
   return false;
}</pre>
```

Best case? k is in arr[0] c1 steps = O(1)

Worst case? k is not in arr c2\*(arr.length) = O(arr.length)

### Binary search

Find an integer in a *sorted* array

```
// requires sorted array
// returns whether k is in array
boolean find(int[]arr, int k) {
   return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
   int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
   if(lo==hi) return false;
   if(arr[mid]==k) return true;
   if(arr[mid]< k) return help(arr,k,mid+1,hi);
   else return help(arr,k,lo,mid);
}
</pre>
```

### Binary search

Best case:

c1 steps = O(1)

Worst case:

T(n) = c2 + T(n/2) where c2 is constant and n is hi-lo O(log n) where n is arr.length (recurrence equation)

```
// requires sorted array
// returns whether k is in array
boolean find(int[]arr, int k) {
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]==k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```

### Solving Recurrence Relations

1. Determine the recurrence relation and the base case.

 $- T(n) = c^{2} + T(n/2) T(1) = c^{1}$ 

What is T(n/2)?

What is T(n/4)?

# Solving Recurrence Relations

- 1. Determine the recurrence relation and the base case.
  - $T(n) = c^{2} + T(n/2) T(1) = c^{1}$
- 2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions "k*".

$$- T(n) = c2 + c2 + T(n/4)$$
  
= c2 + c2 + c2 + T(n/8)  
= ...  
= c2(k) + T(n/(2<sup>k</sup>))

- 3. Find a closed-form expression: find *the number of expansions* to reach the base case
  - $n/(2^{k}) = 1 \text{ means } n = 2^{k} \text{ means } k = \log_{2} n$
  - So  $T(n) = c2 \log_2 n + T(1)$
  - So  $T(n) = c2 \log_2 n + c1$
  - So T(n) is  $O(\log n)$

### Ignoring constant factors

- So binary search is  $O(\log n)$  and linear is O(n)
  - But which is faster?
- Depends on constant factors
  - How many assignments, additions, etc. for each n
    - E.g. T(n) = 5,000,000n vs.  $T(n) = 5n^2$
  - And could depend on overhead unrelated to n
    - E.g.  $T(n) = 5,000,000 + \log n$  vs. T(n) = 10 + n
- But there exists some  $n_0$  such that for all  $n > n_0$  binary search wins

# Example

- Let's try to "help" linear search
  - 100x faster computer
  - 3x faster compiler/language
  - 2x smarter programmer (eliminate half the work)
  - Each iteration is 600x as fast as in binary search



# Big-O, formally

Definition:

g(n) is in O( f(n) ) if there exists positive constants c and  $n_0$  such that  $g(n) \le c f(n)$  for all  $n \ge n_0$ 

Big-O, formally

#### Definition:

g(n) is in O( f(n) ) if there exists positive constants c and  $n_0$  such that  $g(n) \le c f(n)$  for all  $n \ge n_0$ 



- To show g(*n*) is in O( f(*n*) ),
  - pick a c large enough to "cover the constant factors"
  - $n_0$  large enough to "cover the lower-order terms"
- Example:
  - Let  $g(n) = 3n^2 + 17$  and  $f(n) = n^2$

What could we pick for *c* and  $n_0$ ?

$$c = 5 \text{ and } n_0 = 10$$

 $(3^*10^2)+17 \le 5^*10^2$  so  $3n^2+17$  is  $O(n^2)$ 

# Example 1, using formal definition

- Let g(n) = 1000n and f(n) = n<sup>2</sup>
  - To prove g(n) is in O(f(n)), find a valid c and  $n_0$
  - The "cross-over point" is n=1000
    - g(n) = 1000\*1000 and f(n) = 1000<sup>2</sup>
  - So we can choose  $n_0$ =1000 and c=1
    - Many other possible choices, e.g., larger n<sub>0</sub> and/or c

Definition: g(n) is in O( f(n) ) if there exist positive constants c and  $n_0$  such that  $g(n) \le c f(n)$  for all  $n \ge n_0$ 

### Example 2, using formal definition

- Let  $g(n) = n^4$  and  $f(n) = 2^n$ 
  - To prove g(n) is in O(f(n)), find a valid c and  $n_0$
  - We can choose  $n_0$ =20 and c=1
    - g(n) = 20<sup>4</sup> vs. f(n) = 1\*2<sup>20</sup>

Definition: g(n) is in O( f(n) ) if there exist positive constants c and  $n_0$  such that  $g(n) \le c f(n)$  for all  $n \ge n_0$ 

### What's with the c?

- The constant multiplier *c* is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Consider:

g(n) = 7n+5f(n) = n

- These have the same asymptotic behavior (linear)
  - So g(n) is in O(f(n)) even through g(n) is always larger
  - The *c* allows us to provide a coefficient so that  $g(n) \le c f(n)$
- In this example:
  - To prove g(n) is in O(f(n)), have c = 12, n₀ = 1
     (7\*1)+5 ≤ 12\*1

# What you can drop

- Eliminate coefficients because we don't have units anyway
  - $3n^2$  versus  $5n^2$  doesn't mean anything when we have not specified the cost of constant-time operations
- Eliminate low-order terms because they have vanishingly small impact as *n* grows
- Do NOT ignore constants that are not multipliers
  - $n^3$  is not  $O(n^2)$
  - $3^{n}$  is not  $O(2^{n})$

# More Asymptotic Notation

- Upper bound: O( f(n) ) is the set of all functions asymptotically less than or equal to f(n)
  - g(n) is in O(f(n)) if there exist constants c and n<sub>0</sub> such thatg(n) ≤ c f(n) for all n ≥ n<sub>0</sub>
- Lower bound: Ω( f(n) ) is the set of all functions asymptotically greater than or equal to f(n)
  - g(n) is in Ω(f(n)) if there exist constants*c*and*n*<sub>0</sub> such thatg(n) ≥ c f(n) for all n ≥ n<sub>0</sub>
- Tight bound: θ( f(n) ) is the set of all functions asymptotically equal to f(n)

 $\begin{array}{l} - g(n) \text{ is in } \theta(f(n)) \text{ if } \underline{both} g(n) \text{ is in } O(f(n)) \underline{and} \\ g(n) \text{ is in } \Omega(f(n)) \end{array}$ 

# Correct terms, in theory

A common error is to say O(f(n)) when you mean  $\theta(f(n))$ 

- A linear algorithm is in both O(n) and  $O(n^5)$
- Better to say it is  $\theta(n)$
- That means that it is not, for example  $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
  - For all c, there exists an  $n_0$  such that...  $\leq$
  - Example: array sum is  $o(n^2)$  but not o(n)
- "little-omega": intersection of "big-Omega" and not "big-Theta"
  - For all c, there exists an  $n_0$  such that...  $\geq$
  - Example: array sum is  $\omega(\log n)$  but not  $\omega(n)$

# Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

• We generally will give an O upper bound to the worst-case running time of an algorithm

# **Big-O Caveats**

- Asymptotic complexity focuses on behavior for large *n*
- You can be misled about trade-offs using it
- Example:  $n^{1/10}$  vs. log n
  - Asymptotically  $n^{1/10}$  grows more quickly
  - "Cross-over" point is around 5 \*  $10^{17}$
  - So for any smaller input, prefer  $n^{1/10}$
- For *small n*, an algorithm with worse asymptotic complexity might be faster

# Addendum: Timing vs. Big-O Summary

- Big-O
  - Examine the algorithm itself, not the implementation
  - Reason about performance as a function of *n*
- Timing
  - Compare implementations
  - Focus on data sets other than worst case
  - Determine what the constants actually are

# Bubble Sort

}

}

```
private static void bubbleSort(int[] intArray) {
   int n = intArray.length;
   int temp = 0;
                                                    0
                                                            n-1
   for(int i=0; i < n; i++){</pre>
                                                            n-2
       for(int j=1; j < (n-i); j++){</pre>
           if(intArray[j-1] > intArray[j]){
                                                    2
                                                            n-3
               //swap the elements!
                                                     . . . .
                                                            . . .
               temp = intArray[j-1];
                                                    n-2
                                                            1
               intArray[j-1] = intArray[j];
                                                    n-1
                                                            \mathbf{0}
               intArray[j] = temp;
           }
        }
```

Number of iterations 0+1+2+3+..+(n-2)+(n-1)= n(n-1)/2

Each iteration takes c1