

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis

Lauren Milne Summer 2015

Today

- Homework 1 due 10:59pm next Wednesday, July 1st.
- Review math essential to algorithm analysis
 - Exponents and logarithms
 - Floor and ceiling functions
- Algorithm analysis

Logarithms and Exponents

See Excel file for plot data – play with it!

Logarithms and Exponents

See Excel file for plot data – play with it!

Logarithms and Exponents

See Excel file for plot data – play with it!

Properties of logarithms

- log(A*B) = log A + log B
- $\log(A/B) = \log A \log B$
- $\log(N^k) = k \log N$
- log(log x) is written log log x
 Grows as slowly as 2^{2^x} grows quickly
- (log x) (log x) is written log^2x
 - It is greater than $\log x$ for all x > 2
 - It is not the same as log log x

Expand this:

 $log(2a^{2}b/c)$

 $= 1 + 2\log(a) + \log(b) - \log(c)$

Log base doesn't matter much!

Any base *B* log is equivalent to base 2 log within a constant factor

- Do we care about constant factors?
- $-\log_2 x = 3.22 \log_{10} x$
- To convert from base B to base A:

 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

Floor and ceiling

[X] Floor function: the largest integer $\leq X$ [2.7] = 2 [-2.7] = -3 [2] = 2

[X] Ceiling function: the smallest integer $\ge X$ [2.3] = 3 [-2.3] = -2 [2] = 2

Facts about floor and ceiling

1.
$$X-1 < [X] \le X$$

2. $X \le [X] < X+1$
3. $[n/2] + [n/2] = n$ if n is an integer

Algorithm Analysis

As the "size" of an algorithm's input grows, we want to know

- Time it takes to run
- Space it takes to to run

Because the curves we saw are so different (2ⁿ vs logn), often care about only which curve we are like

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs?

Algorithm Analysis: A first example

• Consider the following program segment:

```
x:= 0;
for i = 1 to n do
  for j = 1 to i do
      x := x + 1;
```

- What is the value of x at the end?
- Ī j X 1 1 to 1 1 Number of times x gets incremented is 2 1 to 2 3 = 1 + 2 + 3 + ... + (n-1) + n6 3 1 to 3 $= n^{(n+1)/2}$ 10 4 1 to 4

n 1 to n ?

. . .

11

Analyzing the loop

• Consider the following program segment:

```
x:= 0;
for i = 1 to n do
  for j = 1 to i do
      x := x + 1;
```

• The total number of loop iterations is n*(n+1)/2

$$- n^{*}(n+1)/2 = (n^{2}+n)/2$$

- For large enough n, the lower order and constant terms are irrelevant!
- So this is $O(n^2)$

Lower-order terms don't matter

$n^{*}(n+1)/2$ vs. just $n^{2}/2$

Lower-order terms don't matter

 $n^{*}(n+1)/2$ vs. just $n^{2}/2$

Big-O: Common Names

O(1) $O(\log n)$	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>) logarithmic
O(n)	linear
O(n log <i>n</i>)	"n log <i>n</i> "
<i>O</i> (<i>n</i> ²)	quadratic
<i>O</i> (<i>n</i> ³)	cubic
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is any constant)
<i>O</i> (<i>k</i> ⁿ)	exponential (where k is any constant > 1)
O(n!)	factorial

Big-O running times

• For a processor capable of one million instructions per second

1.1.1.1	n	$n \log_2 n$	n ²	n ³	1.5 ⁿ	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Analyzing code

Basic operations take "some amount of" constant time

- Arithmetic
- assignment
- access an array index
- etc...

(This is an *approximation of reality*: a very useful "lie".)

Consecutive statements Conditionals Loops Calls Recursion

Sum of times Time to test + slower branch Sum of iterations Time of call's body Solve recurrence equation (next lecture)

Analyzing code

- 1. Add up time for all parts of the algorithm e.g. number of iterations = $(n^2 + n)/2$
- 2. Eliminate low-order terms i.e. eliminate n: $(n^2)/2$
- 3. Eliminate coefficients i.e. eliminate 1/2: (n²)

Examples:

- -4n+5
- 0.5*n* log *n* + 2*n* + 7
- $n^3 + 2^n + 3n$
- $n \log(10n^2)$
 - $n \log(10) + 2n \log(n) = O(n \log n)$

- = O(n)
- $= O(n \log n)$
- $= O(2^n) EXPONENTIAL$ **GROWTH!**

Efficiency

- What does it mean for an algorithm to be *efficient*?
 - We care about *time* (and sometimes *space*)
- Is the following a good definition?
 - "An algorithm is efficient if, when implemented, it runs quickly on real input instances"

Gauging efficiency (performance)

- Why not just time the program?
 - Too much *variability*, not reliable or *portable*:
 - Hardware: processor(s), memory, etc.
 - OS, Java version,
 - Other programs running
 - Implementation dependent
 - Might change based on choice of input
 - May miss worst-case input
 - What happens when *n* doubles in size?
 - Often want to evaluate an *algorithm*, not an implementation

Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

We will focus on large inputs, everything is fast when n is small.

Answer is *independent* of CPU speed, programming language, coding tricks, etc. and is general and rigorous.

We usually care about worst-case running times

- Provides a guarantee
- Difficult to find a satisfactory alternative
 - What about average case?
 - Difficult to express full range of input
 - Could we use randomly-generated input?
 - May learn more about generator than algorithm

Example

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```

Linear search

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
   return false;
}</pre>
```

Best case? k is in arr[0] c1 steps = O(1)

Worst case? k is not in arr c2*(arr.length) = O(arr.length)

Binary search

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
```

Binary search

Best case:

c1 steps = O(1)

Worst case:

T(n) = c2 + T(n/2) where n is hi-lo and c2 is a constant
O(log n) where n is array.length (recurrance relation)

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}</pre>
```

Solving Recurrence Relations

- 1. Determine the recurrence relation and the base case.
 - $T(n) = c^{2} + T(n/2) T(1) = c^{1}$
- 2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions*.

$$- T(n) = c2 + c2 + T(n/4)$$

= c2 + c2 + c2 + T(n/8)
= ...
= c2(k) + T(n/(2^k))

- 3. Find a closed-form expression by setting *the number of expansions* to a value (e.g. 1) which reduces the problem to a base case
 - $n/(2^k) = 1$ means $n = 2^k$ means $k = \log_2 n$
 - So $T(n) = c2 \log_2 n + T(1)$
 - So $T(n) = c2 \log_2 n + c1$ (get to base case and do it)
 - So T(n) is $O(\log n)$

Ignoring constant factors

- So binary search is $O(\log n)$ and linear is O(n)
 - But which is faster?
- Could depend on constant factors
 - How many assignments, additions, etc. for each n (What is the constant c2?)
 - E.g. T(n) = 5,000,000n vs. $T(n) = 5n^2$
 - And could depend on overhead unrelated to n
 - E.g. $T(n) = 5,000,000 + \log n$ vs. T(n) = 10 + n
- But there exists some n_0 such that for all $n > n_0$ binary search wins

Example

- Let's try to "help" linear search
 - Run it on a computer 100x as fast (say 2014 model vs. 1994)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search

Big-O relates functions

O on a function f(n) (for example n^2) means the set of functions with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

- $3n^2$ +17 and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

- $-(3n^2+17)$ is $O(n^2)$
- $-(3n^2+17) = O(n^2)$

We would never say $O(n^2) = (3n^2+17)$

Big-O, formally

Definition:

g(n) is in O(f(n)) if there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

Definition:

g(n) is in O(f(n)) if there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

- To show g(n) is in O(f(n)),
 - pick a c large enough to "cover the constant factors"
 - n_0 large enough to "cover the lower-order terms"
- Example:
 - Let g(n) = $3n^2 + 17$ and f(n) = n^2 What could we pick for c and n_0 ?
 c = 5 and $n_0 = 10$ (3*10²)+17 ≤ 5*10² so $3n^2 + 17$ is O(n²)

Example 1, using formal definition

- Let g(n) = 1000n and $f(n) = n^2$
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - The "cross-over point" is n=1000
 - g(n) = 1000*1000 and f(n) = 1000²
 - So we can choose n_0 =1000 and c=1
 - Many other possible choices, e.g., larger n₀ and/or c

Definition: g(n) is in O(f(n)) if there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

Example 2, using formal definition

- Let $g(n) = n^4$ and $f(n) = 2^n$
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - We can choose n_0 =20 and c=1
 - g(n) = 20⁴ vs. f(n) = 1*2²⁰

Definition: g(n) is in O(f(n)) if there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

What's with the c?

- The constant multiplier *c* is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Consider:

g(n) = 7n+5f(n) = n

- These have the same asymptotic behavior (linear)
 - So g(n) is in O(f(n)) even through g(n) is always larger
 - The *c* allows us to provide a coefficient so that $g(n) \le c f(n)$
- In this example:
 - To prove g(n) is in O(f(n)), have c = 12, n₀ = 1
 (7*1)+5 ≤ 12*1

What you can drop

- Eliminate coefficients because we don't have units anyway
 - $3n^2$ versus $5n^2$ doesn't mean anything when we have not specified the cost of constant-time operations
- Eliminate low-order terms because they have vanishingly small impact as *n* grows
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^{n} is not $O(2^{n})$

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n₀ such thatg(n) ≤ c f(n) for all n ≥ n₀
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in Ω(f(n)) if there exist constants*c*and*n*₀ such thatg(n) ≥ c f(n) for all n ≥ n₀
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)

 $\begin{array}{l} - g(n) \text{ is in } \theta(f(n)) \text{ if } \underline{both} g(n) \text{ is in } O(f(n)) \underline{and} \\ g(n) \text{ is in } \Omega(f(n)) \end{array}$

More Asymptotic Notation

• Upper bound: O(f(n))

• Lower bound: $\Omega(f(n))$

• Tight bound: $\theta(f(n))$

Correct terms, in theory

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- A linear algorithm is in both O(n) and $O(n^5)$
- Better to say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
 - For all c, there exists an n_0 such that... \leq
 - Example: array sum is $o(n^2)$ but not o(n)
- "little-omega": intersection of "big-Omega" and not "big-Theta"
 - For all c, there exists an n_0 such that... \geq
 - Example: array sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- We will give an O upper bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
 - $O(\log n)$ in the worst-case
 - What is the best case?
 - The find-in-sorted-array *problem* is actually Ω(log n) in the worst-case
 - *No* algorithm can do better
 - Why can't we find a O(f(n)) for a problem?
 - You can always create a slower algorithm

Other things to analyze

- Space instead of time
- Average case
 - If you assume something about the *probability distribution* of inputs
 - If you use randomization in the algorithm
 - Will see an example with sorting
 - With an *amortized guarantee*
 - Average time over any sequence of operations
 - Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Big-O Caveats

- Asymptotic complexity focuses on behavior for large *n*
- You can be misled about trade-offs using it
- Example: $n^{1/10}$ vs. log n
 - Asymptotically $n^{1/10}$ grows more quickly
 - "Cross-over" point is around 5 * 10^{17}
 - So for any smaller input, prefer $n^{1/10}$
- For *small n*, an algorithm with worse asymptotic complexity might be faster

Addendum: Timing vs. Big-O Summary

- Big-O
 - Examine the algorithm itself, not the implementation
 - Reason about performance as a function of *n*
- Timing
 - Compare implementations
 - Focus on data sets other than worst case
 - Determine what the constants actually are

Bubble Sort

}

}

```
private static void bubbleSort(int[] intArray) {
   int n = intArray.length;
   int temp = 0;
                                                    0
                                                            n-1
   for(int i=0; i < n; i++){</pre>
                                                            n-2
       for(int j=1; j < (n-i); j++){</pre>
           if(intArray[j-1] > intArray[j]){
                                                    2
                                                            n-3
               //swap the elements!
                                                     . . . .
                                                            . . .
               temp = intArray[j-1];
                                                    n-2
                                                            1
               intArray[j-1] = intArray[j];
                                                    n-1
                                                            \mathbf{0}
               intArray[j] = temp;
           }
        }
```

Number of iterations 0+1+2+3+..+(n-2)+(n-1)= n(n-1)/2

Each iteration takes c1