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Today 

 
•  Homework 1 due 10:59pm next Wednesday, July 1st. 
 
•  Review math essential to algorithm analysis 

–  Exponents and logarithms 
–  Floor and ceiling functions 
 

•  Algorithm analysis 
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Logarithms and Exponents 
See Excel file 
for plot data – 
play with it! 

n 
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Properties of logarithms 

•  log(A*B) = log A + log B 
•  log(A/B) = log A – log B 
•  log(Nk)= k log N 
•  log(log x) is written log log x 

–  Grows as slowly as 22  grows quickly 
•  (log x)(log x) is written log2x 

–  It is greater than log x for all x > 2 
–  It is not the same as log log x 

Expand this: 
 log(2a2b/c) 

= 1 + 2log(a) + log(b) – log(c)
 
 

 

 x 
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Log base doesn’t matter much! 

Any base B log is equivalent to base 2 log within a constant factor 
–  Do we care about constant factors? 
–  log2 x = 3.22 log10 x 
–  To convert from base B to base A: 

   logB x = (logA x) / (logA B) 
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Floor and ceiling 

⎣ ⎦X

⎡ ⎤X

Floor function: the largest integer < X 

Ceiling function: the smallest integer > X 

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2232.722.7 =−=−=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 2222.332.3 =−=−=
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Facts about floor and ceiling 

⎣ ⎦
⎡ ⎤

⎣ ⎦ ⎡ ⎤ integer an is n ifnn/2n/23.
1XXX2.

XX1X1.

=+

+<≤

≤<−
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Algorithm Analysis 

As the “size” of an algorithm’s input grows, we want to know 
–  Time it takes to run 
–  Space it takes to to run 

Because the curves we saw are so different (2^n vs logn), often 
care about only which curve we are like 

Separate issue: Algorithm correctness – does it produce the right 
answer for all inputs? 
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Algorithm Analysis: A first example 
•  Consider the following program segment:  

x:= 0;
for i = 1 to n do
   for j = 1 to i do

x := x + 1;
•  What is the value of x at the end? 

 
1  1 to 1      1 
2  1 to 2      3 
3  1 to 3      6 
4  1 to 4      10 
… 
n    1 to n        ? 

= 1 + 2 + 3 + … + (n-1) + n 

i       j       x 

Number of times x gets incremented is 

= n*(n+1)/2 
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Analyzing the loop 
•  Consider the following program segment:  

x:= 0;
for i = 1 to n do
   for j = 1 to i do

x := x + 1;

 
•  The total number of loop iterations is n*(n+1)/2 

–  n*(n+1)/2 = (n2+ n)/2 

–  For large enough n, the lower order and constant terms are 
irrelevant! 

–  So this is O(n2) 
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Lower-order terms don’t matter 

n*(n+ 1)/2   vs. just n2/2 
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Lower-order terms don’t matter 

n*(n+ 1)/2   vs. just n2/2 
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Big-O: Common Names 

O(1)   constant (same as O(k) for constant k) 
O(log n)  logarithmic 
O(n)   linear 
O(n log n)         “n log n” 
O(n2)   quadratic 
O(n3)   cubic 
O(nk)   polynomial (where is k is any constant) 
O(kn)   exponential (where k is any constant > 1) 
O(n!)   factorial 
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Big-O running times 

•  For a processor capable of one million instructions per second 
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Analyzing code 

Basic operations  take “some amount of” constant time 
–  Arithmetic  
–  assignment  
–  access an array index 
–  etc… 

(This is an approximation of reality: a very useful “lie”.) 
 
Consecutive statements  Sum of times 
Conditionals    Time to test + slower branch 
Loops     Sum of iterations 
Calls     Time of call’s body 
Recursion    Solve recurrence equation       

      (next lecture) 
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Analyzing code 

1.  Add up time for all parts of the algorithm 
 e.g. number of iterations = (n2+ n)/2 

2.  Eliminate low-order terms i.e. eliminate n: (n2)/2 
3.  Eliminate coefficients i.e. eliminate 1/2: (n2)   
 
Examples: 

–  4n + 5   
–  0.5n log n + 2n + 7 
–  n3 + 2n + 3n 
–   n log (10n2 ) 

•  n log(10)+ 2n log (n)   
 

 

= O(n) 
= O(n log n) 
= O(2n)  EXPONENTIAL 

GROWTH! 
= O(n log n) 
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Efficiency 

•  What does it mean for an algorithm to be efficient? 
–  We care about time (and sometimes space) 

•  Is the following a good definition? 
–  “An algorithm is efficient if, when implemented, it runs 

quickly on real input instances” 
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Gauging efficiency (performance) 

•  Why not just time the program? 
–  Too much variability, not reliable or portable: 

•  Hardware: processor(s), memory, etc. 
•  OS, Java version, 
•  Other programs running 
•  Implementation dependent 

–  Might change based on choice of input 
•  May miss worst-case input 
•  What happens when n doubles in size? 

–  Often want to evaluate an algorithm, not an implementation 
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Comparing algorithms 

When is one algorithm (not implementation) better than another? 

 

 
 
We will focus on large inputs, everything is fast when n is small. 
 

Answer is independent of CPU speed, programming language, coding 
tricks, etc. and is general and rigorous. 
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We usually care about worst-case running times 

•  Provides a guarantee 
•  Difficult to find a satisfactory alternative 

–  What about average case? 
•  Difficult to express full range of input 

–  Could we use randomly-generated input? 
•  May learn more about generator than algorithm 

22 



Example 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   ??? 
} 



Linear search 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   for(int i=0; i < arr.length; ++i) 
      if(arr[i] == k) 
        return true; 
   return false; 
} 

Best case? 
k is in arr[0]  
c1 steps 
= O(1) 
 
Worst case? 
k is not in arr 
c2*(arr.length) 
= O(arr.length) 
      
 



Binary search 

Find an integer in a sorted array      
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    



Binary search 
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// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case:  
 c1 steps = O(1) 

Worst case:  
 T(n) = c2 + T(n/2) where n is hi-lo and c2 is a constant 
 O(log n) where n is array.length (recurrance relation) 



Solving Recurrence Relations 

1.  Determine the recurrence relation and the base case. 
–  T(n) = c2+ T(n/2)   T(1) = c1 

2.  “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

–  T(n)  = c2 + c2 + T(n/4) 
          = c2 + c2 + c2 + T(n/8) 

                 = … 
                 = c2(k) + T(n/(2k)) 

3.  Find a closed-form expression by setting the number of expansions 
to a value (e.g. 1) which reduces the problem to a base case 

–  n/(2k) = 1 means n = 2k  means k = log2 n 
–  So T(n) = c2 log2 n + T(1)  
–  So T(n) = c2 log2 n + c1  (get to base case and do it) 
–  So T(n) is O(log n) 
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Ignoring constant factors 

•  So binary search is O(log n) and linear is O(n)  
–  But which is faster? 

•  Could depend on constant factors 
–  How many assignments, additions, etc. for each n (What is the 

constant c2?) 
•  E.g. T(n) = 5,000,000n  vs. T(n) = 5n2  

–  And could depend on overhead unrelated to n 
•  E.g. T(n) = 5,000,000 + log n  vs. T(n) = 10 + n 
 

•  But there exists some n0 such that for all n > n0 binary search wins 

28 



Example 
•  Let’s try to “help” linear search 

–  Run it on a computer 100x as fast (say 2014 model vs. 1994) 
–  Use a new compiler/language that is 3x as fast 
–  Be a clever programmer to eliminate half the work 
–  So doing each iteration is 600x as fast as in binary search 
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Big-O relates functions 

O on a function f(n) (for example n2) means the set of functions 
with asymptotic behavior less than or equal to f(n) 

 
So (3n2+17)  is in O(n2)  

–  3n2+17 and n2  have the same asymptotic behavior 
 

Confusingly, we also say/write: 
–  (3n2+17)  is O(n2)  
–  (3n2+17)  =  O(n2)  

We would never say O(n2) =  (3n2+17) 
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Big-O, formally 
Definition:   

  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  
  g(n) ≤  c f(n)  for all n ≥ n0 
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Big-O, formally 
Definition:  

  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  
  g(n) ≤  c f(n)  for all n ≥ n0 

 

•  To show g(n) is in O( f(n) ),  
–  pick a c large enough to “cover the constant factors”   
–  n0 large enough to “cover the lower-order terms” 

•  Example: 
–  Let g(n) = 3n2+17 and f(n) = n2 

  What could we pick for c and n0? 
  c = 5 and n0 = 10  
  (3*102)+17 ≤  5*102  so  3n2+17 is O(n2) 
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Example 1, using formal definition 

•  Let g(n) = 1000n and f(n) = n2 

–  To prove g(n) is in O(f(n)), find a valid c and n0  
–  The “cross-over point” is n=1000 

•   g(n) = 1000*1000 and f(n) = 10002  
–  So we can choose n0=1000 and c=1 

•  Many other possible choices, e.g., larger n0 and/or c 
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Definition:  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  

 
  g(n) ≤  c f(n)  for all n ≥ n0 



Example 2, using formal definition 

•  Let g(n) = n4 and f(n) = 2n 

–  To prove g(n) is in O(f(n)), find a valid c and n0  
–  We can choose n0=20 and c=1 

•   g(n) = 204 vs. f(n) = 1*220 
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Definition:  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  

 
  g(n) ≤  c f(n)  for all n ≥ n0 



What’s with the c? 

•  The constant multiplier c is what allows functions that differ only in 
their largest coefficient to have the same asymptotic complexity 

•  Consider:  
 g(n) = 7n+5  
 f(n) = n 

–  These have the same asymptotic behavior (linear) 
•  So g(n) is in O(f(n)) even through g(n) is always larger 
•  The c allows us to provide a coefficient so that g(n) ≤  c f(n) 
 

–  In this example:  
•  To prove g(n) is in O(f(n)), have c = 12, n0 = 1 

 (7*1)+5 ≤ 12*1 
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What you can drop 

•  Eliminate coefficients because we don’t have units anyway 
–  3n2  versus 5n2  doesn’t mean anything when we have not 

specified the cost of constant-time operations 
 

•  Eliminate low-order terms because they have vanishingly small 
impact as n grows 

•  Do NOT ignore constants that are not multipliers 
–  n3 is not O(n2) 
–  3n is not O(2n) 
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More Asymptotic Notation 

•  Upper bound: O( f(n) ) is the set of all functions asymptotically 
less than or equal to f(n) 
–  g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n) ≤  c f(n) for all n ≥ n0 

•  Lower bound: Ω( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n) 
–  g(n) is in Ω( f(n) ) if there exist  constants c and n0 such that  

  g(n) ≥  c f(n) for all n ≥ n0 

•  Tight bound: θ( f(n) ) is the set of all functions asymptotically 
equal to f(n) 
–  g(n) is in θ( f(n) ) if  both  g(n) is in O( f(n) ) and 

    g(n) is in Ω( f(n) )  
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More Asymptotic Notation 

•  Upper bound: O( f(n) )  

•  Lower bound: Ω( f(n) )  

•  Tight bound: θ( f(n) ) 
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Correct terms, in theory 

A common error is to say O( f(n) ) when you mean θ( f(n) ) 
–  A linear algorithm is in both O(n) and  O(n5)  
–  Better to say it is θ(n) 
–  That means that it is not, for example O(log n) 

Less common notation: 
–  “little-oh”: intersection of “big-Oh” and not “big-Theta” 

•  For all c, there exists an n0 such that… ≤ 
•  Example: array sum is o(n2) but not o(n) 

–  “little-omega”: intersection of “big-Omega” and not “big-Theta” 
•  For all c, there exists an n0 such that… ≥ 
•  Example: array sum is ω(log n) but not ω(n) 
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What we are analyzing 

•  We will give an O upper bound to the worst-case running time of 
an algorithm 

•  Example: binary-search algorithm  
–  O(log n) in the worst-case 
–  What is the best case?  
–  The find-in-sorted-array problem is actually Ω(log n) in the 

worst-case 
•  No algorithm can do better 
•  Why can’t we find a O(f(n)) for a problem? 
•  You can always create a slower algorithm 
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Other things to analyze 

•  Space instead of time 
 

•  Average case 
–  If you assume something about the probability distribution of 

inputs 
–  If you use randomization in the algorithm 

•  Will see an example with sorting 
–  With an amortized guarantee 

•  Average time over any sequence of operations 
•  Will discuss in a later lecture 
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Summary 

Analysis can be about: 

•  The problem or the algorithm (usually algorithm) 

•  Time or space (usually time) 

•  Best-, worst-, or average-case (usually worst) 

•  Upper-, lower-, or tight-bound  (usually upper or tight) 
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Big-O Caveats 

•  Asymptotic complexity focuses on behavior for large n  

•  You can be misled about trade-offs using it 
 
•  Example: n1/10 vs. log n 

–  Asymptotically n1/10 grows more quickly 
–  “Cross-over” point is around 5 * 1017 

–  So for any smaller input, prefer n1/10 

 
•  For small n, an algorithm with worse asymptotic complexity 

might be faster 
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Addendum: Timing vs. Big-O Summary 

•  Big-O 
–  Examine the algorithm itself, not the implementation 
–  Reason about performance as a function of n 

•  Timing  
–  Compare implementations 
–  Focus on data sets other than worst case 
–  Determine what the constants actually are 
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Bubble Sort 
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private static void bubbleSort(int[] intArray) {
   int n = intArray.length;
   int temp = 0;
   for(int i=0; i < n; i++){

for(int j=1; j < (n-i); j++){                      
   if(intArray[j-1] > intArray[j]){

//swap the elements!
temp = intArray[j-1];
intArray[j-1] = intArray[j];
intArray[j] = temp;

   }
}

   }
}                             
 
 

i      j 
0  n-1 
1  n-2 
2    n-3 
…  … 
n-2  1 
n-1  0 
 
Number of iterations 
0+1+2+3+..+(n-2)+(n-1)  
= n(n-1)/2  
 
Each iteration takes c1 
 
O(n2) 


