
CSE373: Data Structures and Algorithms

Lecture 3: Math Review; Algorithm Analysis

Lauren Milne
Summer 2015

Today

•  Homework 1 due 10:59pm next Wednesday, July 1st.

•  Review math essential to algorithm analysis

–  Exponents and logarithms
–  Floor and ceiling functions

•  Algorithm analysis

2

Logarithms and Exponents
See Excel file
for plot data –
play with it!

n

3

Logarithms and Exponents
See Excel file
for plot data –
play with it!

n

4

Logarithms and Exponents
See Excel file
for plot data –
play with it!

n

5

Properties of logarithms

•  log(A*B) = log A + log B
•  log(A/B) = log A – log B
•  log(Nk)= k log N
•  log(log x) is written log log x

–  Grows as slowly as 22 grows quickly
•  (log x)(log x) is written log2x

–  It is greater than log x for all x > 2
–  It is not the same as log log x

Expand this:
 log(2a2b/c)

= 1 + 2log(a) + log(b) – log(c)

 x

6

Log base doesn’t matter much!

Any base B log is equivalent to base 2 log within a constant factor
–  Do we care about constant factors?
–  log2 x = 3.22 log10 x
–  To convert from base B to base A:

 logB x = (logA x) / (logA B)

7

Floor and ceiling

⎣ ⎦X

⎡ ⎤X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2232.722.7 =−=−=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 2222.332.3 =−=−=

8

Facts about floor and ceiling

⎣ ⎦
⎡ ⎤

⎣ ⎦ ⎡ ⎤ integer an is n ifnn/2n/23.
1XXX2.

XX1X1.

=+

+<≤

≤<−

9

Algorithm Analysis

As the “size” of an algorithm’s input grows, we want to know
–  Time it takes to run
–  Space it takes to to run

Because the curves we saw are so different (2^n vs logn), often
care about only which curve we are like

Separate issue: Algorithm correctness – does it produce the right
answer for all inputs?

10

Algorithm Analysis: A first example
•  Consider the following program segment:

x:= 0;
for i = 1 to n do
 for j = 1 to i do

x := x + 1;
•  What is the value of x at the end?

1  1 to 1 1
2  1 to 2 3
3  1 to 3 6
4  1 to 4 10
…
n 1 to n ?

= 1 + 2 + 3 + … + (n-1) + n

i j x

Number of times x gets incremented is

= n*(n+1)/2

11

Analyzing the loop
•  Consider the following program segment:

x:= 0;
for i = 1 to n do
 for j = 1 to i do

x := x + 1;

•  The total number of loop iterations is n*(n+1)/2

–  n*(n+1)/2 = (n2+ n)/2

–  For large enough n, the lower order and constant terms are
irrelevant!

–  So this is O(n2)

12

Lower-order terms don’t matter

n*(n+ 1)/2 vs. just n2/2

13

Lower-order terms don’t matter

n*(n+ 1)/2 vs. just n2/2

14

Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n) “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is any constant)
O(kn) exponential (where k is any constant > 1)
O(n!) factorial

15

Big-O running times

•  For a processor capable of one million instructions per second

16

Analyzing code

Basic operations take “some amount of” constant time
–  Arithmetic
–  assignment
–  access an array index
–  etc…

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of times
Conditionals Time to test + slower branch
Loops Sum of iterations
Calls Time of call’s body
Recursion Solve recurrence equation

 (next lecture)

17

Analyzing code

1.  Add up time for all parts of the algorithm
 e.g. number of iterations = (n2+ n)/2

2.  Eliminate low-order terms i.e. eliminate n: (n2)/2
3.  Eliminate coefficients i.e. eliminate 1/2: (n2)

Examples:

–  4n + 5
–  0.5n log n + 2n + 7
–  n3 + 2n + 3n
–  n log (10n2)

•  n log(10)+ 2n log (n)

= O(n)
= O(n log n)
= O(2n) EXPONENTIAL

GROWTH!
= O(n log n)

18

Efficiency

•  What does it mean for an algorithm to be efficient?
–  We care about time (and sometimes space)

•  Is the following a good definition?
–  “An algorithm is efficient if, when implemented, it runs

quickly on real input instances”

19

Gauging efficiency (performance)

•  Why not just time the program?
–  Too much variability, not reliable or portable:

•  Hardware: processor(s), memory, etc.
•  OS, Java version,
•  Other programs running
•  Implementation dependent

–  Might change based on choice of input
•  May miss worst-case input
•  What happens when n doubles in size?

–  Often want to evaluate an algorithm, not an implementation

20

Comparing algorithms

When is one algorithm (not implementation) better than another?

We will focus on large inputs, everything is fast when n is small.

Answer is independent of CPU speed, programming language, coding
tricks, etc. and is general and rigorous.

21

We usually care about worst-case running times

•  Provides a guarantee
•  Difficult to find a satisfactory alternative

–  What about average case?
•  Difficult to express full range of input

–  Could we use randomly-generated input?
•  May learn more about generator than algorithm

22

Example

Find an integer in a sorted array

23

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 ???
}

Linear search

Find an integer in a sorted array

24

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
}

Best case?
k is in arr[0]
c1 steps
= O(1)

Worst case?
k is not in arr
c2*(arr.length)
= O(arr.length)

Binary search

Find an integer in a sorted array

25

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Binary search

26

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Best case:
 c1 steps = O(1)

Worst case:
 T(n) = c2 + T(n/2) where n is hi-lo and c2 is a constant
 O(log n) where n is array.length (recurrance relation)

Solving Recurrence Relations

1.  Determine the recurrence relation and the base case.
–  T(n) = c2+ T(n/2) T(1) = c1

2.  “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

–  T(n) = c2 + c2 + T(n/4)
 = c2 + c2 + c2 + T(n/8)

 = …
 = c2(k) + T(n/(2k))

3.  Find a closed-form expression by setting the number of expansions
to a value (e.g. 1) which reduces the problem to a base case

–  n/(2k) = 1 means n = 2k means k = log2 n
–  So T(n) = c2 log2 n + T(1)
–  So T(n) = c2 log2 n + c1 (get to base case and do it)
–  So T(n) is O(log n)

27

Ignoring constant factors

•  So binary search is O(log n) and linear is O(n)
–  But which is faster?

•  Could depend on constant factors
–  How many assignments, additions, etc. for each n (What is the

constant c2?)
•  E.g. T(n) = 5,000,000n vs. T(n) = 5n2

–  And could depend on overhead unrelated to n
•  E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n

•  But there exists some n0 such that for all n > n0 binary search wins

28

Example
•  Let’s try to “help” linear search

–  Run it on a computer 100x as fast (say 2014 model vs. 1994)
–  Use a new compiler/language that is 3x as fast
–  Be a clever programmer to eliminate half the work
–  So doing each iteration is 600x as fast as in binary search

29

Big-O relates functions

O on a function f(n) (for example n2) means the set of functions
with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

–  3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:
–  (3n2+17) is O(n2)
–  (3n2+17) = O(n2)

We would never say O(n2) = (3n2+17)

30

Big-O, formally
Definition:

 g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that
 g(n) ≤ c f(n) for all n ≥ n0

31

Big-O, formally
Definition:

 g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that
 g(n) ≤ c f(n) for all n ≥ n0

•  To show g(n) is in O(f(n)),
–  pick a c large enough to “cover the constant factors”
–  n0 large enough to “cover the lower-order terms”

•  Example:
–  Let g(n) = 3n2+17 and f(n) = n2

 What could we pick for c and n0?
 c = 5 and n0 = 10
 (3*102)+17 ≤ 5*102 so 3n2+17 is O(n2)

32

Example 1, using formal definition

•  Let g(n) = 1000n and f(n) = n2

–  To prove g(n) is in O(f(n)), find a valid c and n0
–  The “cross-over point” is n=1000

•  g(n) = 1000*1000 and f(n) = 10002
–  So we can choose n0=1000 and c=1

•  Many other possible choices, e.g., larger n0 and/or c

33

Definition: g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

Example 2, using formal definition

•  Let g(n) = n4 and f(n) = 2n

–  To prove g(n) is in O(f(n)), find a valid c and n0
–  We can choose n0=20 and c=1

•  g(n) = 204 vs. f(n) = 1*220

34

Definition: g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

What’s with the c?

•  The constant multiplier c is what allows functions that differ only in
their largest coefficient to have the same asymptotic complexity

•  Consider:
 g(n) = 7n+5
 f(n) = n

–  These have the same asymptotic behavior (linear)
•  So g(n) is in O(f(n)) even through g(n) is always larger
•  The c allows us to provide a coefficient so that g(n) ≤ c f(n)

–  In this example:
•  To prove g(n) is in O(f(n)), have c = 12, n0 = 1

 (7*1)+5 ≤ 12*1

35

What you can drop

•  Eliminate coefficients because we don’t have units anyway
–  3n2 versus 5n2 doesn’t mean anything when we have not

specified the cost of constant-time operations

•  Eliminate low-order terms because they have vanishingly small
impact as n grows

•  Do NOT ignore constants that are not multipliers
–  n3 is not O(n2)
–  3n is not O(2n)

36

More Asymptotic Notation

•  Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)
–  g(n) is in O(f(n)) if there exist constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

•  Lower bound: Ω(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)
–  g(n) is in Ω(f(n)) if there exist constants c and n0 such that

 g(n) ≥ c f(n) for all n ≥ n0

•  Tight bound: θ(f(n)) is the set of all functions asymptotically
equal to f(n)
–  g(n) is in θ(f(n)) if both g(n) is in O(f(n)) and

 g(n) is in Ω(f(n))

37

More Asymptotic Notation

•  Upper bound: O(f(n))

•  Lower bound: Ω(f(n))

•  Tight bound: θ(f(n))

38

Correct terms, in theory

A common error is to say O(f(n)) when you mean θ(f(n))
–  A linear algorithm is in both O(n) and O(n5)
–  Better to say it is θ(n)
–  That means that it is not, for example O(log n)

Less common notation:
–  “little-oh”: intersection of “big-Oh” and not “big-Theta”

•  For all c, there exists an n0 such that… ≤
•  Example: array sum is o(n2) but not o(n)

–  “little-omega”: intersection of “big-Omega” and not “big-Theta”
•  For all c, there exists an n0 such that… ≥
•  Example: array sum is ω(log n) but not ω(n)

39

What we are analyzing

•  We will give an O upper bound to the worst-case running time of
an algorithm

•  Example: binary-search algorithm
–  O(log n) in the worst-case
–  What is the best case?
–  The find-in-sorted-array problem is actually Ω(log n) in the

worst-case
•  No algorithm can do better
•  Why can’t we find a O(f(n)) for a problem?
•  You can always create a slower algorithm

40

Other things to analyze

•  Space instead of time

•  Average case
–  If you assume something about the probability distribution of

inputs
–  If you use randomization in the algorithm

•  Will see an example with sorting
–  With an amortized guarantee

•  Average time over any sequence of operations
•  Will discuss in a later lecture

41

Summary

Analysis can be about:

•  The problem or the algorithm (usually algorithm)

•  Time or space (usually time)

•  Best-, worst-, or average-case (usually worst)

•  Upper-, lower-, or tight-bound (usually upper or tight)

42

Big-O Caveats

•  Asymptotic complexity focuses on behavior for large n

•  You can be misled about trade-offs using it

•  Example: n1/10 vs. log n

–  Asymptotically n1/10 grows more quickly
–  “Cross-over” point is around 5 * 1017

–  So for any smaller input, prefer n1/10

•  For small n, an algorithm with worse asymptotic complexity

might be faster

43

Addendum: Timing vs. Big-O Summary

•  Big-O
–  Examine the algorithm itself, not the implementation
–  Reason about performance as a function of n

•  Timing
–  Compare implementations
–  Focus on data sets other than worst case
–  Determine what the constants actually are

44

Bubble Sort

45

private static void bubbleSort(int[] intArray) {
 int n = intArray.length;
 int temp = 0;
 for(int i=0; i < n; i++){

for(int j=1; j < (n-i); j++){
 if(intArray[j-1] > intArray[j]){

//swap the elements!
temp = intArray[j-1];
intArray[j-1] = intArray[j];
intArray[j] = temp;

 }
}

 }
}

i j
0 n-1
1 n-2
2 n-3
… …
n-2 1
n-1 0

Number of iterations
0+1+2+3+..+(n-2)+(n-1)
= n(n-1)/2

Each iteration takes c1

O(n2)

