CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis

Lauren Milne
Summer 2015

Today

- Homework 1 due 10:59pm next Wednesday, July 1st.
- Review math essential to algorithm analysis
- Exponents and logarithms
- Floor and ceiling functions
- Algorithm analysis

Logarithms and Exponents

See Excel file
for plot data play with it!

Logarithms and Exponents

See Excel file for plot data play with it!

Logarithms and Exponents

See Excel file for plot data play with it!

Properties of logarithms

- $\log (A * B)=\log A+\log B$
- $\log (A / B)=\log A-\log B$
- $\log \left(\mathbf{N}^{\mathrm{k}}\right)=\mathrm{k} \log \mathrm{N}$
- $\log (\log x)$ is written $\log \log x$
- Grows as slowly as $2^{2^{x}}$ grows quickly
- $(\log x)(\log x)$ is written $\log ^{2} x$
- It is greater than $\log \mathbf{x}$ for all $\mathbf{x}>2$
- It is not the same as $\log \log \mathbf{x}$

Expand this:
$\log \left(2 a^{2} b / c\right)$
$=1+2 \log (a)+\log (b)-\log (c)$

Log base doesn't matter much!

Any base $B \log$ is equivalent to base $2 \log$ within a constant factor

- Do we care about constant factors?
$-\log _{2} \mathrm{x}=3.22 \log _{10} \mathrm{x}$
- To convert from base B to base A:

$$
\log _{\mathrm{B}} \mathrm{x}=\left(\log _{\mathrm{A}} \mathrm{x}\right) /\left(\log _{\mathrm{A}} \mathrm{~B}\right)
$$

Floor and ceiling

$\lfloor X\rfloor$ Floor function: the largest integer $\leq X$

$$
\lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2
$$

$\lceil X\rceil$ Ceiling function: the smallest integer $\geq X$

$$
[2.3]=3 \quad[-2.3]=-2 \quad\lceil 2\rceil=2
$$

Facts about floor and ceiling

1. $X-1<\lfloor X\rfloor \leq X$
2. $X \leq\lceil X\rceil<X+1$
3. $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n$ if n is an integer

Algorithm Analysis

As the "size" of an algorithm's input grows, we want to know

- Time it takes to run
- Space it takes to to run

Because the curves we saw are so different ($2^{\wedge} \mathrm{n}$ vs logn), often care about only which curve we are like

Separate issue: Algorithm correctness - does it produce the right answer for all inputs?

Algorithm Analysis: A first example

- Consider the following program segment:

$$
\begin{aligned}
& x:=0 ; \\
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& \quad x:=x+1 ;
\end{aligned}
$$

- What is the value of x at the end?

\mathbf{i}	\mathbf{j}	\mathbf{X}
1	1 to 1	1
2	1 to 2	3
3	1 to 3	6
4	1 to 4	10

Number of times x gets incremented is

$$
\begin{aligned}
& =1+2+3+\ldots+(n-1)+n \\
& =n *(n+1) / 2
\end{aligned}
$$

n 1 to n
?

Analyzing the loop

- Consider the following program segment:

$$
\begin{aligned}
& x:=0 ; \\
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& x:=x+1 ;
\end{aligned}
$$

- The total number of loop iterations is $\mathrm{n}^{*}(\mathrm{n}+1) / 2$
$-n^{*}(n+1) / 2=\left(n^{2}+n\right) / 2$
- For large enough n, the lower order and constant terms are irrelevant!
- So this is $O\left(\mathrm{n}^{2}\right)$

Lower-order terms don't matter

$$
n^{*}(n+1) / 2 \text { vs. just } n^{2} / 2
$$

Lower-order terms don't matter

$$
n^{*}(n+1) / 2 \text { vs. just } n^{2} / 2
$$

Big-O: Common Names

$O(1)$	constant (same as $O(k)$ for constant k)
$O(\log n)$	logarithmic
$O(n)$	linear
$O(\mathrm{n} \log n)$	"n $\log n "$
$O\left(n^{2}\right)$	quadratic
$O\left(n^{3}\right)$	cubic
$O\left(n^{k}\right)$	polynomial (where is k is any constant)
$O\left(k^{n}\right)$	exponential (where k is any constant > 1)
$O(n!)$	factorial

Big-O running times

- For a processor capable of one million instructions per second

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Analyzing code

Basic operations take "some amount of" constant time

- Arithmetic
- assignment
- access an array index
- etc...
(This is an approximation of reality: a very useful "lie".)

Consecutive statements
Conditionals
Loops
Calls
Recursion

Sum of times
Time to test + slower branch
Sum of iterations
Time of call's body
Solve recurrence equation (next lecture)

Analyzing code

1. Add up time for all parts of the algorithm
e.g. number of iterations $=\left(n^{2}+n\right) / 2$
2. Eliminate low-order terms i.e. eliminate $n:\left(n^{2}\right) / 2$
3. Eliminate coefficients i.e. eliminate $1 / 2:\left(n^{2}\right)$

Examples:

$$
\begin{array}{ll}
-\quad 4 n+5 & =\mathrm{O}(\mathrm{n}) \\
- & 0.5 n \log n+2 n+7 \\
- & n^{3}+2^{n}+3 n \\
- & n \log (\mathrm{n} \log n) \\
& =\mathrm{O}\left(2^{n}\right) \text { EXF } \\
& \mathrm{n} \log (10)+2 \mathrm{n} \log (\mathrm{n}) \\
& =\mathrm{O}(\mathrm{n} \log n)
\end{array}
$$

Efficiency

- What does it mean for an algorithm to be efficient?
- We care about time (and sometimes space)
- Is the following a good definition?
- "An algorithm is efficient if, when implemented, it runs quickly on real input instances"

Gauging efficiency (performance)

- Why not just time the program?
- Too much variability, not reliable or portable:
- Hardware: processor(s), memory, etc.
- OS, Java version,
- Other programs running
- Implementation dependent
- Might change based on choice of input
- May miss worst-case input
- What happens when n doubles in size?
- Often want to evaluate an algorithm, not an implementation

Comparing algorithms

When is one algorithm (not implementation) better than another?

We will focus on large inputs, everything is fast when n is small.
Answer is independent of CPU speed, programming language, coding tricks, etc. and is general and rigorous.

We usually care about worst-case running times

- Provides a guarantee
- Difficult to find a satisfactory alternative
- What about average case?
- Difficult to express full range of input
- Could we use randomly-generated input?
- May learn more about generator than algorithm

Example

```
2 2
```

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```


Linear search

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array
Best case?

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
    return false;
}
k is in arr[0]
c1 steps
=O(1)
Worst case?
k is not in arr
c2*(arr.length)
\(=\) O(arr.length)
```


Binary search

2	3	5	16	37	50	73	75	126

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```


Binary search

Best case:
c1 steps $=O(1)$
Worst case:
$T(n)=c 2+T(n / 2)$ where n is hi-lo and c2 is a constant
$O(\log n)$ where n is array. length (recurrance relation)

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```


Solving Recurrence Relations

1. Determine the recurrence relation and the base case.

$$
-\quad T(n)=c 2+T(n / 2) \quad T(1)=c 1
$$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

$$
\begin{aligned}
-\quad T(n) & =c 2+c 2+T(n / 4) \\
& =c 2+\mathrm{c} 2+\mathrm{c} 2+T(n / 8) \\
& =\ldots \\
& =\mathrm{c} 2(\mathrm{k})+T\left(n /\left(2^{\mathrm{k}}\right)\right)
\end{aligned}
$$

3. Find a closed-form expression by setting the number of expansions to a value (e.g. 1) which reduces the problem to a base case

- $n /\left(2^{\mathrm{k}}\right)=1$ means $n=2^{\mathrm{k}}$ means $\mathrm{k}=\log _{2} n$
- So $T(n)=c 2 \log _{2} n+T(1)$
- So $T(n)=c 2 \log _{2} n+c 1$ (get to base case and do it)
- \quad So $T(n)$ is $O(\log n)$

Ignoring constant factors

- So binary search is $O(\log n)$ and linear is $O(n)$
- But which is faster?
- Could depend on constant factors
- How many assignments, additions, etc. for each n (What is the constant c2?)
- E.g. $T(n)=5,000,000 n \quad$ vs. $T(n)=5 n^{2}$
- And could depend on overhead unrelated to n
- E.g. $T(n)=5,000,000+\log n$ vs. $T(n)=10+n$
- But there exists some n_{0} such that for all $n>\mathrm{n}_{0}$ binary search wins

Example

- Let's try to "help" linear search
- Run it on a computer 100x as fast (say 2014 model vs. 1994)
- Use a new compiler/language that is $3 x$ as fast
- Be a clever programmer to eliminate half the work
- So doing each iteration is 600x as fast as in binary search

Big-O relates functions

O on a function $\mathrm{f}(n)$ (for example n^{2}) means the set of functions with asymptotic behavior less than or equal to $f(n)$

So $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
$-3 n^{2}+17$ and n^{2} have the same asymptotic behavior

Confusingly, we also say/write:
$-\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
$-\left(3 n^{2}+17\right)=O\left(n^{2}\right)$

We would never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$

Big-O, formally

Definition:

$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist
positive constants c and n_{0} such that
$\mathrm{g}(n) \leq c \mathrm{f}(n) \quad$ for all $n \geq n_{0}$

Big-O, formally

Definition:
$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist positive constants c and n_{0} such that $\mathrm{g}(n) \leq \mathrm{cf}(n) \quad$ for all $n \geq n_{0}$

- To show $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$,
- pick a c large enough to "cover the constant factors"
- n_{0} large enough to "cover the lower-order terms"
- Example:
- Let $g(n)=3 n^{2}+17$ and $f(n)=n^{2}$

What could we pick for c and n_{0} ?
$c=5$ and $n_{0}=10$
$\left(3^{*} 10^{2}\right)+17 \leq 5^{*} 10^{2}$ so $3 n^{2}+17$ is $\mathrm{O}\left(n^{2}\right)$

Example 1, using formal definition

- Let $\mathrm{g}(n)=1000 n$ and $\mathrm{f}(n)=n^{2}$
- To prove $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$, find a valid c and n_{0}
- The "cross-over point" is $n=1000$
- $\mathrm{g}(n)=1000 * 1000$ and $\mathrm{f}(n)=1000^{2}$
- So we can choose $n_{0}=1000$ and $c=1$
- Many other possible choices, e.g., larger n_{0} and/or c

Definition: $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

Example 2, using formal definition

- Let $\mathrm{g}(n)=n^{4}$ and $\mathrm{f}(n)=2^{n}$
- To prove $g(n)$ is in $O(f(n))$, find a valid c and n_{0}
- We can choose $n_{0}=20$ and $c=1$
- $g(n)=20^{4}$ vs. $f(n)=1 * 2^{20}$

Definition: $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

What's with the c ?

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Consider:

$$
\begin{aligned}
& g(n)=7 n+5 \\
& f(n)=n
\end{aligned}
$$

- These have the same asymptotic behavior (linear)
- So $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ even through $\mathrm{g}(n)$ is always larger
- The c allows us to provide a coefficient so that $\mathrm{g}(n) \leq c \mathrm{f}(n)$
- In this example:
- To prove $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$, have $c=12, n_{0}=1$ $(7 * 1)+5 \leq 12 * 1$

What you can drop

- Eliminate coefficients because we don't have units anyway
- $3 n^{2}$ versus $5 n^{2}$ doesn't mean anything when we have not specified the cost of constant-time operations
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
- n^{3} is not $O\left(n^{2}\right)$
-3^{n} is not $O\left(2^{n}\right)$

More Asymptotic Notation

- Upper bound: $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- $g(n)$ is in $O(f(n))$ if there exist constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$
- Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
- $\mathrm{g}(n)$ is in $\Omega(\mathrm{f}(n))$ if there exist constants c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$
- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$
- $g(n)$ is in $\theta(f(n))$ if both $g(n)$ is in $O(f(n))$ and $\mathrm{g}(n)$ is in $\Omega(\mathrm{f}(n))$

More Asymptotic Notation

- Upper bound: $O(f(n))$
- Lower bound: $\Omega(\mathrm{f}(n))$
- Tight bound: $\theta(\mathrm{f}(n))$

Correct terms, in theory

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$

- A linear algorithm is in both $O(n)$ and $O\left(n^{5}\right)$
- Better to say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
- For all c, there exists an n_{0} such that... s
- Example: array sum is $o\left(n^{2}\right)$ but not $o(n)$
- "little-omega": intersection of "big-Omega" and not "big-Theta"
- For all c, there exists an n_{0} such that... \geq
- Example: array sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- We will give an O upper bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
- $O(\log n)$ in the worst-case
- What is the best case?
- The find-in-sorted-array problem is actually $\Omega(\log n)$ in the worst-case
- No algorithm can do better
- Why can't we find a $O(f(n))$ for a problem?
- You can always create a slower algorithm

Other things to analyze

- Space instead of time
- Average case
- If you assume something about the probability distribution of inputs
- If you use randomization in the algorithm
- Will see an example with sorting
- With an amortized guarantee
- Average time over any sequence of operations
- Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Big-O Caveats

- Asymptotic complexity focuses on behavior for large n
- You can be misled about trade-offs using it
- Example: $n^{1 / 10}$ vs. $\log n$
- Asymptotically $n^{1 / 10}$ grows more quickly
- "Cross-over" point is around 5 * 10^{17}
- So for any smaller input, prefer $n^{1 / 10}$
- For small n, an algorithm with worse asymptotic complexity might be faster

Addendum: Timing vs. Big-O Summary

- Big-O
- Examine the algorithm itself, not the implementation
- Reason about performance as a function of n
- Timing
- Compare implementations
- Focus on data sets other than worst case
- Determine what the constants actually are

Bubble Sort

```
private static void bubbleSort(int[] intArray) {
    int n = intArray.length;
    int temp = 0;
    for(int i=0; i < n; i++){
    for(int j=1; j < (n-i); j++){ 1 n-2
        if(intArray[j-1] > intArray[j]){
            //swap the elements!
            temp = intArray[j-1];
            intArray[j-1] = intArray[j];
            intArray[j] = temp;
        }
        }
    }
}
Number of iterations
0+1+2+3+..+(n-2)+(n-1)
=n(n-1)/2
```

Each iteration takes c1
$O\left(n^{2}\right)$

