
CSE373: Data Structures & Algorithms

Lecture 22: The P vs. NP question,
NP-Completeness

Lauren	 Milne	
Summer	 2015	

Admin

•  Homework 6 is posted

– Due next Wednesday
– No partners

Algorithm	 Design	 Techniques	
•  Greedy	

–  Shortest	 path,	 minimum	 spanning	 tree,	 …	
•  Divide	 and	 Conquer	

–  Divide	 the	 problem	 into	 smaller	 subproblems,	
solve	 them,	 and	 combine	 into	 the	 overall	 soluDon	

–  OFen	 done	 recursively	
–  Quick	 sort,	 merge	 sort	 are	 great	 examples	

•  Dynamic	 Programming	
–  Brute	 force	 through	 all	 possible	 soluDons,	 storing	 soluDons	
to	 subproblems	 to	 avoid	 repeat	 computaDon	

•  Backtracking	
–  A	 clever	 form	 of	 exhausDve	 search	

•  Backtracking	 is	 a	 technique	 used	 to	 solve	 problems	 with	 a	 large	
search	 space,	 by	 systemaDcally	 trying	 and	 eliminaDng	 possibiliDes.	

•  A	 standard	 example	 of	 backtracking	 would	 be	 going	 through	 a	 maze.	 	 	
–  At	 some	 point,	 you	 might	 have	 two	 opDons	 of	 which	 direcDon	 to	 go:	

Junction
Portion A

Po
rt

io
n

B

Backtracking:	 Idea	

Por$on	 B	

Po
r$
on

	 A
	

One	 strategy	 would	 be	 to	 try	 going	 through	
PorDon	 A	 of	 the	 maze.	 	

If	 you	 get	 stuck	 before	 you	 find	 your	
way	 out,	 then	 you	 "backtrack"	 to	 the	

juncDon.	
	 	

At	 this	 point	 in	 Dme	 you	 know	 that	 PorDon	 A	
will	 NOT	 lead	 you	 out	 of	 the	 maze,	 	
so	 you	 then	 start	 searching	 in	 PorDon	 B	

	

Backtracking	

•  Clearly,	 at	 a	 single	 juncDon	 you	
could	 have	 even	 more	 than	 2	
choices.	 	

•  The	 backtracking	 strategy	 says	 to	
try	 each	 choice,	 one	 aFer	 the	
other,	 	
–  if	 you	 ever	 get	 stuck,	 "backtrack"	
to	 the	 juncDon	 and	 try	 the	 next	
choice.	 	

•  If	 you	 try	 all	 choices	 and	 never	
found	 a	 way	 out,	 then	 there	 IS	
no	 soluDon	 to	 the	 maze.	

	

B
C

A

Backtracking

Backtracking	 (animaDon)	

start ?

?
dead end

dead end

? ?
dead end

dead end

?
success!

dead end

Backtracking
•  Dealing	 with	 the	 maze:	

–  From	 your	 start	 point,	 you	 will	 iterate	 through	 each	
possible	 starDng	 move.	 	

–  From	 there,	 you	 recursively	 move	 forward.	 	
–  If	 you	 ever	 get	 stuck,	 the	 recursion	 takes	 you	 back	 to	
where	 you	 were,	 and	 you	 try	 the	 next	 possible	 move.	 	

•  Make	 sure	 you	 don't	 try	 too	 many	 possibiliDes,	 	
– Mark	 which	 locaDons	 in	 the	 maze	 have	 been	 visited	
already	 so	 that	 no	 locaDon	 in	 the	 maze	 gets	 visited	 twice.	 	

–  If	 a	 place	 has	 already	 been	 visited,	 there	 is	 no	 point	 in	
trying	 to	 reach	 the	 end	 of	 the	 maze	 from	 there	 again.	

The	 neat	 thing	 about	 coding	 up	 backtracking	 is	
that	 it	 can	 be	 done	 recursively,	 without	 having	
to	 do	 all	 the	 bookkeeping	 at	 once.	

–  Instead,	 the	 stack	 of	 recursive	 calls	 does	 most	 of	
the	 bookkeeping	 	

–  (i.e.,	 keeps	 track	 of	 which	 locaDons	 we’ve	 tried	 so	
far.)	

Backtracking	

On	 to	 Complexity	 theory!	

The $1M question
The Clay Mathematics Institute
Millennium Prize Problems

1.  Birch and Swinnerton-Dyer Conjecture
2.  Hodge Conjecture
3.  Navier-Stokes Equations
4.  P vs NP
5.  Poincaré Conjecture
6.  Riemann Hypothesis
7.  Yang-Mills Theory

The P versus NP problem (informally)

Can every problem whose solution can be quickly
verified by a computer also be quickly solved by a

computer?

What is an efficient algorithm?

polynomial time

O(nc) for some
constant c

non-polynomial
time

Is an O(n) algorithm efficient?

How about O(n log n)?

O(n2) ?

O(n10) ?

O(nlog n) ?

O(2n) ?

O(n!) ?

The Class P (polynomial time)

P	

Binary	 Search	

Breadth-‐First	 Search	

Dijkstra’s	 Algorithm	

SorDng	 Algorithms	

NP (Nondeterministic Polynomial
Time)

Binary	 Search	

Breadth-‐First	 Search	

Dijkstra’s	 Algorithm	

SorDng	 Algorithms	
…	

P	

NP	
Hamilton	 Cycle	

Sudoku	

SAT	

…	

The P versus NP problem

Is one of the biggest open problems in computer

science (and mathematics) today

It’s currently unknown whether there exist polynomial
time algorithms for NP-complete problems

–  We know P ⊆ NP, but does P = NP?
–  People generally believe P ≠ NP, but no proof yet

What do these NP problems look like?

Sudoku

3x3x3

Sudoku

3x3x3

Sudoku

4x4x4

Sudoku

4x4x4

Suppose you have an algorithm
S(n) to solve n x n x n

V(n) time to verify the solution
Fact: V(n) = O(n2 x n2)

Question: is there some
constant such that
S(n) = O(nconstant)?

n x n x n

...

Sudoku

Sudoku

n x n x n

...

P vs NP problem

=

Does there exist an algorithm
for solving n x n x n Sudoku
that runs in time p(n) for some
polynomial p() ?

The P versus NP problem (informally)

Can every problem whose solution can be verified
in polynomial time by a computer also be solved

in polynomial time by a computer?

To check if a problem is in NP

•  Phrase the problem as a yes/no question
–  If we can prove any yes instance is correct (in

polynomial time), it is in NP
–  If we can also answer yes or no to the

problem (in polynomial time) without being
given a solution, it is in P

The Class P

The class of all sets that can be
verified in polynomial time.
 AND

The class of all decision
problems that can be
decided in polynomial time.

P	

Binary	 Search	

Breadth-‐First	 Search	

Dijkstra’s	 Algorithm	

SorDng	 Algorithms	

NP

Binary	 Search	

Breadth-‐First	 Search	

Dijkstra’s	 Algorithm	

SorDng	 Algorithms	
…	

P	

NP	
Hamilton	 Cycle	

Sudoku	

SAT	

…	

The class of all sets that
can be verified in
polynomial time.

Sudoku

Input: n x n x n sudoku instance

Output: YES if this sudoku has a solution

NO if it does not

The Set “SUDOKU”
SUDOKU = { All solvable sudoku instances }

Hamilton Cycle

Given a graph G = (V,E), is there a cycle that
visits all the nodes exactly once?

YES if G has a Hamilton cycle
NO if G has no Hamilton cycle

The Set “HAM”
HAM = { graph G | G has a Hamilton cycle }

AND

AND

NOT

Circuit-Satisfiability

Input: A circuit C with one output

Output: YES if C is satisfiable

NO if C is not satisfiable

The Set “SAT”
SAT = { all satisfiable circuits C }

Verifying Membership

Is there a short “proof” I can give you to verify that:

G ∈ HAM?
G ∈ Sudoku?
G ∈ SAT?

Yes: I can just give you the cycle, solution, circuit

The Class NP

The class of sets for which there exist
“short” proofs of membership
(of polynomial length)
that can “quickly” verified
(in polynomial time).

Recall: The algorithm doesn’t have to find the proof; it just needs to be

able to verify that it is a “correct” proof.

Fact: P ⊆ NP

Summary: P versus NP

P: in NP (membership verified in polynomial time)

AND membership in a set can be decided in polynomial time.

NP: “proof of membership” in a set can be verified in
polynomial time.

Fact: P ⊆ NP

Question: Does NP ⊆ P ?
i.e. Does P = NP?
People generally believe P ≠ NP, but no proof yet

Why Care?

Classroom Scheduling
Packing objects into bins
Scheduling jobs on machines
Finding cheap tours visiting a subset of cities
Finding good packet routings in networks
Decryption
…

NP Contains Lots of Problems
We Don’t Know to be in P

OK, OK, I care...

We would have to show that every set in NP has a
polynomial time algorithm…

How do I do that?
It may take a long time!
Also, what if I forgot one of the sets in NP?

How could we prove that NP = P?

We can describe just one problem L in NP, such that if
this problem L is in P, then NP ⊆ P.

It is a problem that can capture all other problems in NP.

The “Hardest” Set in NP

We call these problems NP-complete

How could we prove that NP = P?

Theorem [Cook/Levin]

SAT is one problem in NP, such that if we can show
SAT is in P, then we have shown NP = P.

SAT is a problem in NP that can capture all other
languages in NP.

We say SAT is NP-complete.

Poly-time reducible to each other

Oracle for
problem X

Oracle for
problem Y

Instance of
problem Y

Map instance of Y
into instance of X

Takes polynomial time

Answer

Answer

Any problem in NP SAT

can be reduced
(in polytime to)
an instance of

hence SAT is
NP-complete

Sudoku

can be reduced
(in polytime to)
an instance of

hence Sudoku
is NP-complete

NP-complete: The “Hardest” problems in NP

Sudoku

SAT

3-Colorability

Clique

HAM

Independent-Set

These problems are all “polynomial-time equivalent”
i.e., each of these can be reduced to any of the others
in polynomial time

If you get a polynomial-time algorithm for one,
you get a polynomial-time algorithm for ALL.
(you get millions of dollars, you solve decryption, … etc.)

