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Admin 

 
•  Homework 6 is posted 

– Due next Wednesday 
– No partners 



Algorithm	  Design	  Techniques	  
•  Greedy	  

–  Shortest	  path,	  minimum	  spanning	  tree,	  …	  
•  Divide	  and	  Conquer	  

–  Divide	  the	  problem	  into	  smaller	  subproblems,	  
solve	  them,	  and	  combine	  into	  the	  overall	  soluDon	  

–  OFen	  done	  recursively	  
–  Quick	  sort,	  merge	  sort	  are	  great	  examples	  

•  Dynamic	  Programming	  
–  Brute	  force	  through	  all	  possible	  soluDons,	  storing	  soluDons	  
to	  subproblems	  to	  avoid	  repeat	  computaDon	  

•  Backtracking	  
–  A	  clever	  form	  of	  exhausDve	  search	  



•  Backtracking	  is	  a	  technique	  used	  to	  solve	  problems	  with	  a	  large	  
search	  space,	  by	  systemaDcally	  trying	  and	  eliminaDng	  possibiliDes.	  

•  A	  standard	  example	  of	  backtracking	  would	  be	  going	  through	  a	  maze.	  	  	  
–  At	  some	  point,	  you	  might	  have	  two	  opDons	  of	  which	  direcDon	  to	  go:	  
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Backtracking:	  Idea	  
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One	  strategy	  would	  be	  to	  try	  going	  through	  
PorDon	  A	  of	  the	  maze.	  	  

If	  you	  get	  stuck	  before	  you	  find	  your	  
way	  out,	  then	  you	  "backtrack"	  to	  the	  

juncDon.	  
	  	  

At	  this	  point	  in	  Dme	  you	  know	  that	  PorDon	  A	  
will	  NOT	  lead	  you	  out	  of	  the	  maze,	  	  
so	  you	  then	  start	  searching	  in	  PorDon	  B	  

	  

Backtracking	  



•  Clearly,	  at	  a	  single	  juncDon	  you	  
could	  have	  even	  more	  than	  2	  
choices.	  	  

•  The	  backtracking	  strategy	  says	  to	  
try	  each	  choice,	  one	  aFer	  the	  
other,	  	  
–  if	  you	  ever	  get	  stuck,	  "backtrack"	  
to	  the	  juncDon	  and	  try	  the	  next	  
choice.	  	  

•  If	  you	  try	  all	  choices	  and	  never	  
found	  a	  way	  out,	  then	  there	  IS	  
no	  soluDon	  to	  the	  maze.	  
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Backtracking 



Backtracking	  (animaDon)	  
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Backtracking 
•  Dealing	  with	  the	  maze:	  

–  From	  your	  start	  point,	  you	  will	  iterate	  through	  each	  
possible	  starDng	  move.	  	  

–  From	  there,	  you	  recursively	  move	  forward.	  	  
–  If	  you	  ever	  get	  stuck,	  the	  recursion	  takes	  you	  back	  to	  
where	  you	  were,	  and	  you	  try	  the	  next	  possible	  move.	  	  

•  Make	  sure	  you	  don't	  try	  too	  many	  possibiliDes,	  	  
– Mark	  which	  locaDons	  in	  the	  maze	  have	  been	  visited	  
already	  so	  that	  no	  locaDon	  in	  the	  maze	  gets	  visited	  twice.	  	  

–  If	  a	  place	  has	  already	  been	  visited,	  there	  is	  no	  point	  in	  
trying	  to	  reach	  the	  end	  of	  the	  maze	  from	  there	  again.	  



The	  neat	  thing	  about	  coding	  up	  backtracking	  is	  
that	  it	  can	  be	  done	  recursively,	  without	  having	  
to	  do	  all	  the	  bookkeeping	  at	  once.	  

–  Instead,	  the	  stack	  of	  recursive	  calls	  does	  most	  of	  
the	  bookkeeping	  	  

–  (i.e.,	  keeps	  track	  of	  which	  locaDons	  we’ve	  tried	  so	  
far.)	  

Backtracking	  



On	  to	  Complexity	  theory!	  



The $1M question 
The Clay Mathematics Institute  
Millennium Prize Problems 
 
1.  Birch and Swinnerton-Dyer Conjecture  
2.  Hodge Conjecture  
3.  Navier-Stokes Equations  
4.  P vs NP  
5.  Poincaré Conjecture  
6.  Riemann Hypothesis  
7.  Yang-Mills Theory  



The P versus NP problem (informally) 

Can every problem whose solution can be quickly 
verified by a computer also be quickly solved by a 

computer? 



What is an efficient algorithm? 

polynomial time 
 
O(nc) for some  
constant c 

non-polynomial 
time 

Is an O(n) algorithm efficient? 

How about O(n log n)? 

O(n2) ? 

O(n10) ? 

O(nlog n) ? 

O(2n) ? 

O(n!) ? 



The Class P (polynomial time) 

P	  

Binary	  Search	  

Breadth-‐First	  Search	  

Dijkstra’s	  Algorithm	  

SorDng	  Algorithms	  



NP (Nondeterministic Polynomial 
Time) 

Binary	  Search	  

Breadth-‐First	  Search	  

Dijkstra’s	  Algorithm	  

SorDng	  Algorithms	  
…	  

P	  

NP	  
Hamilton	  Cycle	  

Sudoku	  

SAT	  

…	  



The P versus NP problem 
 
Is one of the biggest open problems in computer 

science (and mathematics) today 
 
It’s currently unknown whether there exist polynomial 
time algorithms for NP-complete problems 

–  We know P ⊆ NP, but does P = NP? 
–  People generally believe P ≠ NP, but no proof yet 

 
What do these NP problems look like? 



Sudoku 

3x3x3 



Sudoku 

3x3x3 



Sudoku 

4x4x4 



Sudoku 

4x4x4 



Suppose you have an algorithm 
S(n) to solve n x n x n 

V(n) time to verify the solution 
Fact: V(n) = O(n2 x n2) 

Question: is there some 
constant such that 
S(n) = O(nconstant)? 

n x n x n 

...
 

Sudoku 



Sudoku 

n x n x n 

...
 

P vs NP problem 

= 

Does there exist an algorithm 
for solving n x n x n Sudoku 
that runs in time p(n) for some 
polynomial p( ) ?   



The P versus NP problem (informally) 

Can every problem whose solution can be verified 
in polynomial time by a computer also be solved 

in polynomial time by a computer? 



To check if a problem is in NP 

•  Phrase the problem as a yes/no question 
–  If we can prove any yes instance is correct (in 

polynomial time), it is in NP 
–  If we can also answer yes or no to the 

problem (in polynomial time) without being 
given a solution, it is in P 



The Class P 

The class of all sets that can be 
verified in polynomial time. 
    AND 

The class of all decision 
problems that can be    
decided in polynomial time. 

P	  

Binary	  Search	  

Breadth-‐First	  Search	  

Dijkstra’s	  Algorithm	  

SorDng	  Algorithms	  



NP 

Binary	  Search	  

Breadth-‐First	  Search	  

Dijkstra’s	  Algorithm	  

SorDng	  Algorithms	  
…	  

P	  

NP	  
Hamilton	  Cycle	  

Sudoku	  

SAT	  

…	  

The class of all sets that 
can be verified in 
polynomial time. 



Sudoku 

Input: n x n x n sudoku instance 

Output: YES if this sudoku has a solution 

NO if it does not 

The Set “SUDOKU” 
SUDOKU = { All solvable sudoku instances } 



Hamilton Cycle 

Given a graph G = (V,E), is there a cycle that 
visits all the nodes exactly once? 

YES if G has a Hamilton cycle 
NO if G has no Hamilton cycle 

The Set “HAM” 
HAM = { graph G | G has a Hamilton cycle } 



AND 

AND 

NOT 

Circuit-Satisfiability 

Input: A circuit C with one output 

Output: YES if C is satisfiable 

NO if C is not satisfiable 

The Set “SAT” 
SAT = { all satisfiable circuits C } 



Verifying Membership 

Is there a short “proof” I can give you to verify that: 
 
G ∈ HAM? 
G ∈ Sudoku? 
G ∈ SAT? 
 
 
 
Yes: I can just give you the cycle, solution, circuit 



The Class NP 

The class of sets for which there exist 
“short” proofs of membership  
(of polynomial length)  
that can “quickly” verified  
(in polynomial time). 

 
 
 
Recall: The algorithm doesn’t have to find the proof; it just needs to be 

able to verify that it is a “correct” proof. 

Fact: P ⊆ NP 



Summary: P versus NP 

P: in NP (membership verified in polynomial time) 

AND membership in a set can be decided in polynomial time. 

NP: “proof of membership” in a set can be verified in 
polynomial time. 

Fact: P ⊆ NP 

Question: Does NP ⊆ P ? 
i.e. Does P = NP? 
People generally believe P ≠ NP, but no proof yet 



Why Care? 



 
Classroom Scheduling 
Packing objects into bins 
Scheduling jobs on machines 
Finding cheap tours visiting a subset of cities 
Finding good packet routings in networks 
Decryption 
… 

NP Contains Lots of Problems 
We Don’t Know to be in P 

OK, OK, I care... 
 



 
We would have to show that every set in NP has a 
polynomial time algorithm… 
 
How do I do that?  
It may take a long time! 
Also, what if I forgot one of the sets in NP? 

How could we prove that NP = P? 



We can describe just one problem L in NP, such that if 
this problem L is in P, then NP ⊆ P. 
 
It is a problem that can capture all other problems in NP. 
 
The “Hardest” Set in NP  
 
We call these problems NP-complete 
 
 
 

How could we prove that NP = P? 



Theorem [Cook/Levin] 
 
SAT is one problem in NP, such that if we can show 
SAT is in P, then we have shown NP = P. 
 
SAT is a problem in NP that can capture all other 
languages in NP. 
 
We say SAT is NP-complete. 



Poly-time reducible to each other 

Oracle for 
problem X 

Oracle for 
problem Y 

  
Instance of 
problem Y 

Map instance of Y 
into instance of X 

Takes polynomial time 

Answer 

Answer 

Any problem in NP SAT 

can be reduced  
(in polytime to) 
an instance of  

hence SAT is 
NP-complete 

Sudoku 

can be reduced  
(in polytime to) 
an instance of 

hence Sudoku 
is NP-complete 



NP-complete: The “Hardest” problems in NP 

Sudoku 

SAT 

3-Colorability 

Clique 

HAM 

Independent-Set 

These problems are all “polynomial-time equivalent” 
i.e., each of these can be reduced to any of the others 
in polynomial time 
 
If you get a polynomial-time algorithm for one, 
you get a polynomial-time algorithm for ALL. 
(you get millions of dollars, you solve decryption, … etc.) 
 
 


