
CSE373: Data Structures & Algorithms

Lecture 22: The P vs. NP question,
NP-Completeness

Lauren	
 Milne	

Summer	
 2015	

Admin

•  Homework 6 is posted

– Due next Wednesday
– No partners

Algorithm	
 Design	
 Techniques	

•  Greedy	

–  Shortest	
 path,	
 minimum	
 spanning	
 tree,	
 …	

•  Divide	
 and	
 Conquer	

–  Divide	
 the	
 problem	
 into	
 smaller	
 subproblems,	

solve	
 them,	
 and	
 combine	
 into	
 the	
 overall	
 soluDon	

–  OFen	
 done	
 recursively	

–  Quick	
 sort,	
 merge	
 sort	
 are	
 great	
 examples	

•  Dynamic	
 Programming	

–  Brute	
 force	
 through	
 all	
 possible	
 soluDons,	
 storing	
 soluDons	

to	
 subproblems	
 to	
 avoid	
 repeat	
 computaDon	

•  Backtracking	

–  A	
 clever	
 form	
 of	
 exhausDve	
 search	

•  Backtracking	
 is	
 a	
 technique	
 used	
 to	
 solve	
 problems	
 with	
 a	
 large	

search	
 space,	
 by	
 systemaDcally	
 trying	
 and	
 eliminaDng	
 possibiliDes.	

•  A	
 standard	
 example	
 of	
 backtracking	
 would	
 be	
 going	
 through	
 a	
 maze.	
 	
 	

–  At	
 some	
 point,	
 you	
 might	
 have	
 two	
 opDons	
 of	
 which	
 direcDon	
 to	
 go:	

Junction
Portion A

Po
rt

io
n

B

Backtracking:	
 Idea	

Por$on	
 B	

Po
r$
on

	
 A
	

One	
 strategy	
 would	
 be	
 to	
 try	
 going	
 through	

PorDon	
 A	
 of	
 the	
 maze.	
 	

If	
 you	
 get	
 stuck	
 before	
 you	
 find	
 your	

way	
 out,	
 then	
 you	
 "backtrack"	
 to	
 the	

juncDon.	

	
 	

At	
 this	
 point	
 in	
 Dme	
 you	
 know	
 that	
 PorDon	
 A	

will	
 NOT	
 lead	
 you	
 out	
 of	
 the	
 maze,	
 	

so	
 you	
 then	
 start	
 searching	
 in	
 PorDon	
 B	

	

Backtracking	

•  Clearly,	
 at	
 a	
 single	
 juncDon	
 you	

could	
 have	
 even	
 more	
 than	
 2	

choices.	
 	

•  The	
 backtracking	
 strategy	
 says	
 to	

try	
 each	
 choice,	
 one	
 aFer	
 the	

other,	
 	

–  if	
 you	
 ever	
 get	
 stuck,	
 "backtrack"	

to	
 the	
 juncDon	
 and	
 try	
 the	
 next	

choice.	
 	

•  If	
 you	
 try	
 all	
 choices	
 and	
 never	

found	
 a	
 way	
 out,	
 then	
 there	
 IS	

no	
 soluDon	
 to	
 the	
 maze.	

	

B
C

A

Backtracking

Backtracking	
 (animaDon)	

start ?

?
dead end

dead end

? ?
dead end

dead end

?
success!

dead end

Backtracking
•  Dealing	
 with	
 the	
 maze:	

–  From	
 your	
 start	
 point,	
 you	
 will	
 iterate	
 through	
 each	

possible	
 starDng	
 move.	
 	

–  From	
 there,	
 you	
 recursively	
 move	
 forward.	
 	

–  If	
 you	
 ever	
 get	
 stuck,	
 the	
 recursion	
 takes	
 you	
 back	
 to	

where	
 you	
 were,	
 and	
 you	
 try	
 the	
 next	
 possible	
 move.	
 	

•  Make	
 sure	
 you	
 don't	
 try	
 too	
 many	
 possibiliDes,	
 	

– Mark	
 which	
 locaDons	
 in	
 the	
 maze	
 have	
 been	
 visited	

already	
 so	
 that	
 no	
 locaDon	
 in	
 the	
 maze	
 gets	
 visited	
 twice.	
 	

–  If	
 a	
 place	
 has	
 already	
 been	
 visited,	
 there	
 is	
 no	
 point	
 in	

trying	
 to	
 reach	
 the	
 end	
 of	
 the	
 maze	
 from	
 there	
 again.	

The	
 neat	
 thing	
 about	
 coding	
 up	
 backtracking	
 is	

that	
 it	
 can	
 be	
 done	
 recursively,	
 without	
 having	

to	
 do	
 all	
 the	
 bookkeeping	
 at	
 once.	

–  Instead,	
 the	
 stack	
 of	
 recursive	
 calls	
 does	
 most	
 of	

the	
 bookkeeping	
 	

–  (i.e.,	
 keeps	
 track	
 of	
 which	
 locaDons	
 we’ve	
 tried	
 so	

far.)	

Backtracking	

On	
 to	
 Complexity	
 theory!	

The $1M question
The Clay Mathematics Institute
Millennium Prize Problems

1.  Birch and Swinnerton-Dyer Conjecture
2.  Hodge Conjecture
3.  Navier-Stokes Equations
4.  P vs NP
5.  Poincaré Conjecture
6.  Riemann Hypothesis
7.  Yang-Mills Theory

The P versus NP problem (informally)

Can every problem whose solution can be quickly
verified by a computer also be quickly solved by a

computer?

What is an efficient algorithm?

polynomial time

O(nc) for some
constant c

non-polynomial
time

Is an O(n) algorithm efficient?

How about O(n log n)?

O(n2) ?

O(n10) ?

O(nlog n) ?

O(2n) ?

O(n!) ?

The Class P (polynomial time)

P	

Binary	
 Search	

Breadth-­‐First	
 Search	

Dijkstra’s	
 Algorithm	

SorDng	
 Algorithms	

NP (Nondeterministic Polynomial
Time)

Binary	
 Search	

Breadth-­‐First	
 Search	

Dijkstra’s	
 Algorithm	

SorDng	
 Algorithms	

…	

P	

NP	

Hamilton	
 Cycle	

Sudoku	

SAT	

…	

The P versus NP problem

Is one of the biggest open problems in computer

science (and mathematics) today

It’s currently unknown whether there exist polynomial
time algorithms for NP-complete problems

–  We know P ⊆ NP, but does P = NP?
–  People generally believe P ≠ NP, but no proof yet

What do these NP problems look like?

Sudoku

3x3x3

Sudoku

3x3x3

Sudoku

4x4x4

Sudoku

4x4x4

Suppose you have an algorithm
S(n) to solve n x n x n

V(n) time to verify the solution
Fact: V(n) = O(n2 x n2)

Question: is there some
constant such that
S(n) = O(nconstant)?

n x n x n

...

Sudoku

Sudoku

n x n x n

...

P vs NP problem

=

Does there exist an algorithm
for solving n x n x n Sudoku
that runs in time p(n) for some
polynomial p() ?

The P versus NP problem (informally)

Can every problem whose solution can be verified
in polynomial time by a computer also be solved

in polynomial time by a computer?

To check if a problem is in NP

•  Phrase the problem as a yes/no question
–  If we can prove any yes instance is correct (in

polynomial time), it is in NP
–  If we can also answer yes or no to the

problem (in polynomial time) without being
given a solution, it is in P

The Class P

The class of all sets that can be
verified in polynomial time.
 AND

The class of all decision
problems that can be
decided in polynomial time.

P	

Binary	
 Search	

Breadth-­‐First	
 Search	

Dijkstra’s	
 Algorithm	

SorDng	
 Algorithms	

NP

Binary	
 Search	

Breadth-­‐First	
 Search	

Dijkstra’s	
 Algorithm	

SorDng	
 Algorithms	

…	

P	

NP	

Hamilton	
 Cycle	

Sudoku	

SAT	

…	

The class of all sets that
can be verified in
polynomial time.

Sudoku

Input: n x n x n sudoku instance

Output: YES if this sudoku has a solution

NO if it does not

The Set “SUDOKU”
SUDOKU = { All solvable sudoku instances }

Hamilton Cycle

Given a graph G = (V,E), is there a cycle that
visits all the nodes exactly once?

YES if G has a Hamilton cycle
NO if G has no Hamilton cycle

The Set “HAM”
HAM = { graph G | G has a Hamilton cycle }

AND

AND

NOT

Circuit-Satisfiability

Input: A circuit C with one output

Output: YES if C is satisfiable

NO if C is not satisfiable

The Set “SAT”
SAT = { all satisfiable circuits C }

Verifying Membership

Is there a short “proof” I can give you to verify that:

G ∈ HAM?
G ∈ Sudoku?
G ∈ SAT?

Yes: I can just give you the cycle, solution, circuit

The Class NP

The class of sets for which there exist
“short” proofs of membership
(of polynomial length)
that can “quickly” verified
(in polynomial time).

Recall: The algorithm doesn’t have to find the proof; it just needs to be

able to verify that it is a “correct” proof.

Fact: P ⊆ NP

Summary: P versus NP

P: in NP (membership verified in polynomial time)

AND membership in a set can be decided in polynomial time.

NP: “proof of membership” in a set can be verified in
polynomial time.

Fact: P ⊆ NP

Question: Does NP ⊆ P ?
i.e. Does P = NP?
People generally believe P ≠ NP, but no proof yet

Why Care?

Classroom Scheduling
Packing objects into bins
Scheduling jobs on machines
Finding cheap tours visiting a subset of cities
Finding good packet routings in networks
Decryption
…

NP Contains Lots of Problems
We Don’t Know to be in P

OK, OK, I care...

We would have to show that every set in NP has a
polynomial time algorithm…

How do I do that?
It may take a long time!
Also, what if I forgot one of the sets in NP?

How could we prove that NP = P?

We can describe just one problem L in NP, such that if
this problem L is in P, then NP ⊆ P.

It is a problem that can capture all other problems in NP.

The “Hardest” Set in NP

We call these problems NP-complete

How could we prove that NP = P?

Theorem [Cook/Levin]

SAT is one problem in NP, such that if we can show
SAT is in P, then we have shown NP = P.

SAT is a problem in NP that can capture all other
languages in NP.

We say SAT is NP-complete.

Poly-time reducible to each other

Oracle for
problem X

Oracle for
problem Y

Instance of
problem Y

Map instance of Y
into instance of X

Takes polynomial time

Answer

Answer

Any problem in NP SAT

can be reduced
(in polytime to)
an instance of

hence SAT is
NP-complete

Sudoku

can be reduced
(in polytime to)
an instance of

hence Sudoku
is NP-complete

NP-complete: The “Hardest” problems in NP

Sudoku

SAT

3-Colorability

Clique

HAM

Independent-Set

These problems are all “polynomial-time equivalent”
i.e., each of these can be reduced to any of the others
in polynomial time

If you get a polynomial-time algorithm for one,
you get a polynomial-time algorithm for ALL.
(you get millions of dollars, you solve decryption, … etc.)

