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Admin 

 
•  Homework 6 is posted 

– Due next Wednesday 
– No partners 



Algorithm	
  Design	
  Techniques	
  
•  Greedy	
  

–  Shortest	
  path,	
  minimum	
  spanning	
  tree,	
  …	
  
•  Divide	
  and	
  Conquer	
  

–  Divide	
  the	
  problem	
  into	
  smaller	
  subproblems,	
  
solve	
  them,	
  and	
  combine	
  into	
  the	
  overall	
  soluDon	
  

–  OFen	
  done	
  recursively	
  
–  Quick	
  sort,	
  merge	
  sort	
  are	
  great	
  examples	
  

•  Dynamic	
  Programming	
  
–  Brute	
  force	
  through	
  all	
  possible	
  soluDons,	
  storing	
  soluDons	
  
to	
  subproblems	
  to	
  avoid	
  repeat	
  computaDon	
  

•  Backtracking	
  
–  A	
  clever	
  form	
  of	
  exhausDve	
  search	
  



•  Backtracking	
  is	
  a	
  technique	
  used	
  to	
  solve	
  problems	
  with	
  a	
  large	
  
search	
  space,	
  by	
  systemaDcally	
  trying	
  and	
  eliminaDng	
  possibiliDes.	
  

•  A	
  standard	
  example	
  of	
  backtracking	
  would	
  be	
  going	
  through	
  a	
  maze.	
  	
  	
  
–  At	
  some	
  point,	
  you	
  might	
  have	
  two	
  opDons	
  of	
  which	
  direcDon	
  to	
  go:	
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Backtracking:	
  Idea	
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One	
  strategy	
  would	
  be	
  to	
  try	
  going	
  through	
  
PorDon	
  A	
  of	
  the	
  maze.	
  	
  

If	
  you	
  get	
  stuck	
  before	
  you	
  find	
  your	
  
way	
  out,	
  then	
  you	
  "backtrack"	
  to	
  the	
  

juncDon.	
  
	
  	
  

At	
  this	
  point	
  in	
  Dme	
  you	
  know	
  that	
  PorDon	
  A	
  
will	
  NOT	
  lead	
  you	
  out	
  of	
  the	
  maze,	
  	
  
so	
  you	
  then	
  start	
  searching	
  in	
  PorDon	
  B	
  

	
  

Backtracking	
  



•  Clearly,	
  at	
  a	
  single	
  juncDon	
  you	
  
could	
  have	
  even	
  more	
  than	
  2	
  
choices.	
  	
  

•  The	
  backtracking	
  strategy	
  says	
  to	
  
try	
  each	
  choice,	
  one	
  aFer	
  the	
  
other,	
  	
  
–  if	
  you	
  ever	
  get	
  stuck,	
  "backtrack"	
  
to	
  the	
  juncDon	
  and	
  try	
  the	
  next	
  
choice.	
  	
  

•  If	
  you	
  try	
  all	
  choices	
  and	
  never	
  
found	
  a	
  way	
  out,	
  then	
  there	
  IS	
  
no	
  soluDon	
  to	
  the	
  maze.	
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Backtracking 



Backtracking	
  (animaDon)	
  

start ? 

? 
dead end 

dead end 

? ? 
dead end 

dead end 

? 
success! 

dead end 



Backtracking 
•  Dealing	
  with	
  the	
  maze:	
  

–  From	
  your	
  start	
  point,	
  you	
  will	
  iterate	
  through	
  each	
  
possible	
  starDng	
  move.	
  	
  

–  From	
  there,	
  you	
  recursively	
  move	
  forward.	
  	
  
–  If	
  you	
  ever	
  get	
  stuck,	
  the	
  recursion	
  takes	
  you	
  back	
  to	
  
where	
  you	
  were,	
  and	
  you	
  try	
  the	
  next	
  possible	
  move.	
  	
  

•  Make	
  sure	
  you	
  don't	
  try	
  too	
  many	
  possibiliDes,	
  	
  
– Mark	
  which	
  locaDons	
  in	
  the	
  maze	
  have	
  been	
  visited	
  
already	
  so	
  that	
  no	
  locaDon	
  in	
  the	
  maze	
  gets	
  visited	
  twice.	
  	
  

–  If	
  a	
  place	
  has	
  already	
  been	
  visited,	
  there	
  is	
  no	
  point	
  in	
  
trying	
  to	
  reach	
  the	
  end	
  of	
  the	
  maze	
  from	
  there	
  again.	
  



The	
  neat	
  thing	
  about	
  coding	
  up	
  backtracking	
  is	
  
that	
  it	
  can	
  be	
  done	
  recursively,	
  without	
  having	
  
to	
  do	
  all	
  the	
  bookkeeping	
  at	
  once.	
  

–  Instead,	
  the	
  stack	
  of	
  recursive	
  calls	
  does	
  most	
  of	
  
the	
  bookkeeping	
  	
  

–  (i.e.,	
  keeps	
  track	
  of	
  which	
  locaDons	
  we’ve	
  tried	
  so	
  
far.)	
  

Backtracking	
  



On	
  to	
  Complexity	
  theory!	
  



The $1M question 
The Clay Mathematics Institute  
Millennium Prize Problems 
 
1.  Birch and Swinnerton-Dyer Conjecture  
2.  Hodge Conjecture  
3.  Navier-Stokes Equations  
4.  P vs NP  
5.  Poincaré Conjecture  
6.  Riemann Hypothesis  
7.  Yang-Mills Theory  



The P versus NP problem (informally) 

Can every problem whose solution can be quickly 
verified by a computer also be quickly solved by a 

computer? 



What is an efficient algorithm? 

polynomial time 
 
O(nc) for some  
constant c 

non-polynomial 
time 

Is an O(n) algorithm efficient? 

How about O(n log n)? 

O(n2) ? 

O(n10) ? 

O(nlog n) ? 

O(2n) ? 

O(n!) ? 



The Class P (polynomial time) 

P	
  

Binary	
  Search	
  

Breadth-­‐First	
  Search	
  

Dijkstra’s	
  Algorithm	
  

SorDng	
  Algorithms	
  



NP (Nondeterministic Polynomial 
Time) 

Binary	
  Search	
  

Breadth-­‐First	
  Search	
  

Dijkstra’s	
  Algorithm	
  

SorDng	
  Algorithms	
  
…	
  

P	
  

NP	
  
Hamilton	
  Cycle	
  

Sudoku	
  

SAT	
  

…	
  



The P versus NP problem 
 
Is one of the biggest open problems in computer 

science (and mathematics) today 
 
It’s currently unknown whether there exist polynomial 
time algorithms for NP-complete problems 

–  We know P ⊆ NP, but does P = NP? 
–  People generally believe P ≠ NP, but no proof yet 

 
What do these NP problems look like? 



Sudoku 

3x3x3 



Sudoku 

3x3x3 



Sudoku 

4x4x4 



Sudoku 

4x4x4 



Suppose you have an algorithm 
S(n) to solve n x n x n 

V(n) time to verify the solution 
Fact: V(n) = O(n2 x n2) 

Question: is there some 
constant such that 
S(n) = O(nconstant)? 

n x n x n 

...
 

Sudoku 



Sudoku 

n x n x n 

...
 

P vs NP problem 

= 

Does there exist an algorithm 
for solving n x n x n Sudoku 
that runs in time p(n) for some 
polynomial p( ) ?   



The P versus NP problem (informally) 

Can every problem whose solution can be verified 
in polynomial time by a computer also be solved 

in polynomial time by a computer? 



To check if a problem is in NP 

•  Phrase the problem as a yes/no question 
–  If we can prove any yes instance is correct (in 

polynomial time), it is in NP 
–  If we can also answer yes or no to the 

problem (in polynomial time) without being 
given a solution, it is in P 



The Class P 

The class of all sets that can be 
verified in polynomial time. 
    AND 

The class of all decision 
problems that can be    
decided in polynomial time. 

P	
  

Binary	
  Search	
  

Breadth-­‐First	
  Search	
  

Dijkstra’s	
  Algorithm	
  

SorDng	
  Algorithms	
  



NP 

Binary	
  Search	
  

Breadth-­‐First	
  Search	
  

Dijkstra’s	
  Algorithm	
  

SorDng	
  Algorithms	
  
…	
  

P	
  

NP	
  
Hamilton	
  Cycle	
  

Sudoku	
  

SAT	
  

…	
  

The class of all sets that 
can be verified in 
polynomial time. 



Sudoku 

Input: n x n x n sudoku instance 

Output: YES if this sudoku has a solution 

NO if it does not 

The Set “SUDOKU” 
SUDOKU = { All solvable sudoku instances } 



Hamilton Cycle 

Given a graph G = (V,E), is there a cycle that 
visits all the nodes exactly once? 

YES if G has a Hamilton cycle 
NO if G has no Hamilton cycle 

The Set “HAM” 
HAM = { graph G | G has a Hamilton cycle } 



AND 

AND 

NOT 

Circuit-Satisfiability 

Input: A circuit C with one output 

Output: YES if C is satisfiable 

NO if C is not satisfiable 

The Set “SAT” 
SAT = { all satisfiable circuits C } 



Verifying Membership 

Is there a short “proof” I can give you to verify that: 
 
G ∈ HAM? 
G ∈ Sudoku? 
G ∈ SAT? 
 
 
 
Yes: I can just give you the cycle, solution, circuit 



The Class NP 

The class of sets for which there exist 
“short” proofs of membership  
(of polynomial length)  
that can “quickly” verified  
(in polynomial time). 

 
 
 
Recall: The algorithm doesn’t have to find the proof; it just needs to be 

able to verify that it is a “correct” proof. 

Fact: P ⊆ NP 



Summary: P versus NP 

P: in NP (membership verified in polynomial time) 

AND membership in a set can be decided in polynomial time. 

NP: “proof of membership” in a set can be verified in 
polynomial time. 

Fact: P ⊆ NP 

Question: Does NP ⊆ P ? 
i.e. Does P = NP? 
People generally believe P ≠ NP, but no proof yet 



Why Care? 



 
Classroom Scheduling 
Packing objects into bins 
Scheduling jobs on machines 
Finding cheap tours visiting a subset of cities 
Finding good packet routings in networks 
Decryption 
… 

NP Contains Lots of Problems 
We Don’t Know to be in P 

OK, OK, I care... 
 



 
We would have to show that every set in NP has a 
polynomial time algorithm… 
 
How do I do that?  
It may take a long time! 
Also, what if I forgot one of the sets in NP? 

How could we prove that NP = P? 



We can describe just one problem L in NP, such that if 
this problem L is in P, then NP ⊆ P. 
 
It is a problem that can capture all other problems in NP. 
 
The “Hardest” Set in NP  
 
We call these problems NP-complete 
 
 
 

How could we prove that NP = P? 



Theorem [Cook/Levin] 
 
SAT is one problem in NP, such that if we can show 
SAT is in P, then we have shown NP = P. 
 
SAT is a problem in NP that can capture all other 
languages in NP. 
 
We say SAT is NP-complete. 



Poly-time reducible to each other 

Oracle for 
problem X 

Oracle for 
problem Y 

  
Instance of 
problem Y 

Map instance of Y 
into instance of X 

Takes polynomial time 

Answer 

Answer 

Any problem in NP SAT 

can be reduced  
(in polytime to) 
an instance of  

hence SAT is 
NP-complete 

Sudoku 

can be reduced  
(in polytime to) 
an instance of 

hence Sudoku 
is NP-complete 



NP-complete: The “Hardest” problems in NP 

Sudoku 

SAT 

3-Colorability 

Clique 

HAM 

Independent-Set 

These problems are all “polynomial-time equivalent” 
i.e., each of these can be reduced to any of the others 
in polynomial time 
 
If you get a polynomial-time algorithm for one, 
you get a polynomial-time algorithm for ALL. 
(you get millions of dollars, you solve decryption, … etc.) 
 
 


