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Admin 

Homework 5 due tonight! 
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Sorting: The Big Picture 

Surprising amount of neat stuff to say about sorting: 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort 
… 

Bucket sort 
Radix sort 

External 
sorting 



Bucket Sort (a.k.a. BinSort) 
•  If all values to be sorted are known to be integers between 1 

and K (or any small range): 
–  Create an array of size K  
–  Put each element in its proper bucket (a.k.a. bin) 
–  If data is only integers, no need to store more than a count of 

how times that bucket has been used 

•  Output result via linear pass through array of buckets 
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count array 
1 3 
2 1 
3 2 
4 2 
5 3 

•  Example:  
K=5 
input (5,1,3,4,3,2,1,1,5,4,5) 
 

   output: 1,1,1,2,3,3,4,4,5,5,5 



Analyzing Bucket Sort 

•  Overall: O(n+K) 
–  Linear in n, but also linear in K 
–  Ω(n log n) lower bound does not apply because this is not a 

comparison sort 
 

•  Good when K is smaller (or not much larger) than n 
–  We don’t spend time doing comparisons of duplicates 

•  Bad when K is much larger than n 
–  Wasted space; wasted time during linear O(K) pass 
 

•  For data in addition to integer keys, use list at each bucket 
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Bucket Sort with Data 
•  Most real lists aren’t just keys; we have data 
•  Each bucket is a list (say, linked list) 
•  To add to a bucket, insert in O(1) (at beginning, or keep pointer to 

last element) 

count array 

1 

2 

3 

4 

5 

•  Example: Movie ratings; 
scale 1-5;1=bad, 5=excellent 
Input= 

 5: Casablanca 
 3: Harry Potter movies 
 5: Star Wars Original 
Trilogy 
 1: Rocky V 

Rocky V 

Harry Potter 

Casablanca Star Wars 

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars 
• Easy to keep ‘stable’; Casablanca still before Star Wars 
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Visualization 

•  http://www.cs.usfca.edu/~galles/visualization/CountingSort.html 
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Radix sort 
•  Origins go back to the 1890 U.S. census 
•  Radix = “the base of a number system” 

–  Examples will use 10 because we are used to that 
–  In implementations use larger numbers 

•  For example, for ASCII strings, might use 128 

•  Idea: 
–  Bucket sort on one digit at a time 

•  Number of buckets = radix 
•  Starting with least significant digit 
•  Keeping sort stable 

–  Do one pass per digit 
–  Invariant: After k passes (digits), the last k digits are sorted 
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Example 

Radix = 10 

 
Input:   478 
         537 

     9 
            721 

     3 
   38 
         143 
    67 

9 

First pass:  
 bucket sort by ones digit  

1
 721 

2 3 

    3 
143 

4 5 6 7 

537 
  67 

8 

478 
  38 

9 

    9 

0 

Order now: 721 
                   3 

                   143 
                   537 
                     67 
                   478 
                     38 
                       9 
   



Example 
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Second pass:  
 stable bucket sort by tens digit  

      

1
 721 

2 3 

    3 
143 

4 5 6 7 

537 
  67 

8 

478 
  38 

9 

    9 

0 

Order now:     3 
                   9 

                   721 
        537 

                     38 
        143 

                     67 
                   478 
   

Radix = 10 

Order was: 721 
                   3 

                   143 
                   537 
                     67 
                   478 
                     38 
                       9 
   

1
 

2 

721 

3 

537 
  38 

4 

143 

5 6 

  67 
7 

478 
   

8 9 

     

0 

    3 
    9 



Example 
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Third pass:  
 stable bucket sort by 100s digit  

      

Order now:     3 
                   9 

                     38 
          67 

                   143 
        478 

                   537 
                   721 
   

Radix = 10 

1
 143 

2 3 4 

478 

5 

537 

6 7 

721 
   

8 9 

     

0 

    3 
    9 
  38 
  67 Order was:     3 

                   9 
                   721 

        537 
                     38 

        143 
                     67 
                   478 
   

1
 

2 

721 

3 

537 
  38 

4 

143 

5 6 

  67 
7 

478 
   

8 9 

     

0 

    3 
    9 



Analysis 
Input size: n 
Number of buckets = Radix: B 
Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 
–  Example: Strings of English letters up to length 15 

•  Run-time proportional to: 15*(52 + n)  
•   This is less than n log n only if n > 33,000 
•  Of course, cross-over point depends on constant factors of 

the implementations 
–  And radix sort can have poor locality properties 
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Sorting: The Big Picture 

Surprising amount of neat stuff to say about sorting: 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort 
… 

Bucket sort 
Radix sort 

External 
sorting 



Sorting massive data 

•  Need sorting algorithms that minimize disk/tape access time: 
–  Quicksort and Heapsort both jump all over the array, leading to 

expensive random disk accesses 
–  Merge sort scans linearly through arrays, leading to (relatively) 

efficient sequential disk access 

•  Merge sort is the basis of massive sorting 

•  Merge sort can leverage multiple disks 
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External Merge Sort 

•  Sort 900 MB using 100 MB RAM 
–  Read 100 MB of data into memory 
–  Sort using conventional method (e.g. quicksort) 
–  Write sorted 100MB to temp file 
–  Repeat until all data in sorted chunks (900/100 = 9 total) 

•  Read first 10 MB of each sorted chuck, merge into remaining 
10MB 
–  writing and reading as necessary 
–  Single merge pass instead of log n 
–  Additional pass helpful if data much larger than memory 

•  Parallelism and better hardware can improve performance 
•  Distribution sorts (similar to bucket sort) are also used 
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Last Slide on Sorting 
•  Simple O(n2) sorts can be fastest for small n 

–  Selection sort, Insertion sort (latter linear for mostly-sorted) 
–  Good for “below a cut-off” to help divide-and-conquer sorts 

•  O(n log n) sorts 
–  Heap sort, in-place but not stable nor parallelizable 
–  Merge sort, not in place but stable and works as external sort 
–  Quick sort, in place but not stable and O(n2) in worst-case 

•  Often fastest, but depends on costs of comparisons/copies 
•  Ω (n log n) is worst-case and average lower-bound for sorting by 

comparisons 
•  Non-comparison sorts 

–  Bucket sort good for small number of possible key values 
–  Radix sort uses fewer buckets and more phases 

•  Best way to sort?  It depends! 
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Done with sorting! (phew..) 

•  Moving on…. 
 
•  There are many many algorithm techniques in the world 

–  We’ve learned a few 
 

•  What are a few other “classic” algorithm techniques you should 
at least have heard of? 
–  And what are the main ideas behind how they work? 
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Algorithm Design Techniques 

•  Greedy 
–  Shortest path, minimum spanning tree, … 

•  Divide and Conquer 
–  Divide the problem into smaller subproblems, 

solve them, and combine into the overall solution 
–  Often done recursively 
–  Quick sort, merge sort are great examples 

•  Dynamic Programming 
–  Brute force through all possible solutions, storing solutions to 

subproblems to avoid repeat computation 
•  Backtracking 

–  A clever form of exhaustive search 
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Dynamic Programming: Idea 

•  Divide a bigger problem into many smaller subproblems 
 
•  If the number of subproblems grows exponentially, a recursive 

solution may have an exponential running time L 

•  Dynamic programming to the rescue! J 
 

•  Often an individual subproblem occurs many times! 
–  Store the results of subproblems in a table and re-use them 

instead of recomputing them 
–  Technique called memoization  
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Fibonacci Sequence: Recursive 

•  The fibonacci sequence is a very famous number sequence 
•  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... 
•  The next number is found by adding up the two numbers before it. 
•  Recursive solution: 

•  Exponential running time! 
–  A lot of repeated computation 
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fib(int n) { 
 if (n == 1 || n == 2) { 
   return 1 

  } 
  return fib(n – 2) + fib(n – 1) 
} 
   



Repeated computation 
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f(7) 

f(5) 

f(3) 

f(4) 

f(1) f(2) 

f(6) 

f(4) f(5) 

f(2) f(3) 

f(3) 

f(4) 
f(1) f(2) 

f(2) f(3) 

f(1) f(2) 

f(2) f(3) 

f(1) f(2) 
f(1) f(2) 



Fibonacci Sequence: memoized 

 
 
 
 
 
 
 
 
 
 
 
Now each call of fib(x) only gets computed once for each x! 
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fib(int n) { 
  Map results = new Map() 
  results.put(1, 1) 
  results.put(2, 1) 
 return fibHelper(n, results) 

} 
fibHelper(int n, Map results) { 
  if (!results.contains(n)) { 
    results.put(n, fibHelper(n-2)+fibHelper(n-1)) 
  } 
  return results.get(n) 
} 
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Dynamic Programming 

•  Work “from the bottom up” & save the results of simpler 
problems 
–  solutions to simpler problems are used to compute the 

solution to more complex problems 

•  Used for optimization problems, especially ones that would 
otherwise take exponential time 
–  Must satisfy the principle of optimality i.e. the subsolutions 

of an optimal solution of the problem are themselves 
optimal solutions for their subproblems 



Algorithm Design Techniques 

•  Greedy 
–  Shortest path, minimum spanning tree, … 

•  Divide and Conquer 
–  Divide the problem into smaller subproblems, 

solve them, and combine into the overall solution 
–  Often done recursively 
–  Quick sort, merge sort are great examples 

•  Dynamic Programming 
–  Brute force through all possible solutions, storing solutions to 

subproblems to avoid repeat computation 
•  Backtracking 

–  A clever form of exhaustive search 
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•  Backtracking is a technique used to solve problems with a large 
search space, by systematically trying and eliminating possibilities. 

•  A standard example of backtracking would be going through a maze.   
–  At some point, you might have two options of which direction to go: 

Junction 
Portion A 

Po
rt

io
n 

B
 

Backtracking: Idea 
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Portion B 

P
or

tio
n 

A 

One strategy would be to try going 
through Portion A of the maze.  

If you get stuck before you find your 
way out, then you "backtrack" to the 
junction. 
  

At this point in time you know that 
Portion A will NOT lead you out of the 
maze,  

so you then start searching in 
Portion B 

 

Backtracking 
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•  Clearly, at a single junction you could 
have even more than 2 choices.  

•  The backtracking strategy says to try 
each choice, one after the other,  
–  if you ever get stuck, "backtrack" 

to the junction and try the next 
choice.  

•  If you try all choices and never found 
a way out, then there IS no solution to 
the maze. 

 

B 
C 

A 

Backtracking 
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Backtracking (animation) 

start ? 

? 
dead end 

dead end 

? 
? 

dead end 

dead end 

? 

success! 

dead end 



Backtracking 
•  Dealing with the maze: 

–  From your start point, you will iterate through each possible 
starting move.  

–  From there, you recursively move forward.  
–  If you ever get stuck, the recursion takes you back to where 

you were, and you try the next possible move.  

•  Make sure you don't try too many possibilities,  
–  Mark which locations in the maze have been visited already so 

that no location in the maze gets visited twice.  
–  If a place has already been visited, there is no point in trying to 

reach the end of the maze from there again. 
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The neat thing about coding up backtracking is that it can be done 
recursively, without having to do all the bookkeeping at once. 

–  Instead, the stack of recursive calls does most of the 
bookkeeping  

–  (i.e., keeps track of which locations we’ve tried so far.) 

Backtracking 
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•  Find an arrangement of 8 queens on a 
single chess board such that no two 
queens are attacking one another. 

•  In chess, queens can move all the way 
down any row, column or diagonal (so 
long as no pieces are in the way). 

–  Due to the first two restrictions, it's 
clear that each row and column of the 
board will have exactly one queen. 

Backtracking: The 8 queens problem 
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The backtracking strategy is as follows: 
 

1)  Place a queen on the first available 
square in row 1. 

2)  Move onto the next row, placing a 
queen on the first available square 
there (that doesn't conflict with the 
previously placed queens). 

3)  Continue in this fashion until either:  
a)  You have solved the problem, or 
b)  You get stuck.  

When you get stuck, remove the 
queens that got you there, until you 
get to a row where there is another 
valid square to try. 

Animated Example: 
http://www.hbmeyer.de/
backtrack/achtdamen/
eight.htm#up 

Q 
Q 

Q 
Q 

Q Q 

Continue… 

Backtracking 

32 



•  Another possible brute-force algorithm is generate all possible 
permutations of the numbers 1 through 8 (there are 8! = 40,320),  
–  Use the elements of each permutation as possible positions in 

which to place a queen on each row.  
–  Reject those boards with diagonal attacking positions.  
 

•  The backtracking algorithm does a bit better 
–  constructs the search tree by considering one row of the board at 

a time, eliminating most non-solution board positions at a very 
early stage in their construction.  

–  because it rejects row and diagonal attacks even on incomplete 
boards, it examines only 15,720 possible queen placements.  

•  15,720 is still a lot of possibilities to consider 
–  Sometimes we have no other choice but to do the best we can J 

Backtracking – 8 queens Analysis 
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Algorithm Design Techniques 

•  Greedy 
–  Shortest path, minimum spanning tree, … 

•  Divide and Conquer 
–  Divide the problem into smaller subproblems, 

solve them, and combine into the overall solution 
–  Often done recursively 
–  Quick sort, merge sort are great examples 

•  Dynamic Programming 
–  Brute force through all possible solutions, storing solutions to 

subproblems to avoid repeat computation 
•  Backtracking 

–  A clever form of exhaustive search 
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