
CSE373: Data Structure & Algorithms

Lecture 21: More Sorting and Other
Classes of Algorithms

Lauren Milne
Summer 2015

Admin

Homework 5 due tonight!

2

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

3

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Bucket Sort (a.k.a. BinSort)
•  If all values to be sorted are known to be integers between 1

and K (or any small range):
–  Create an array of size K
–  Put each element in its proper bucket (a.k.a. bin)
–  If data is only integers, no need to store more than a count of

how times that bucket has been used

•  Output result via linear pass through array of buckets

4

count array
1 3
2 1
3 2
4 2
5 3

•  Example:
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

•  Overall: O(n+K)
–  Linear in n, but also linear in K
–  Ω(n log n) lower bound does not apply because this is not a

comparison sort

•  Good when K is smaller (or not much larger) than n
–  We don’t spend time doing comparisons of duplicates

•  Bad when K is much larger than n
–  Wasted space; wasted time during linear O(K) pass

•  For data in addition to integer keys, use list at each bucket

5

Bucket Sort with Data
•  Most real lists aren’t just keys; we have data
•  Each bucket is a list (say, linked list)
•  To add to a bucket, insert in O(1) (at beginning, or keep pointer to

last element)

count array

1

2

3

4

5

•  Example: Movie ratings;
scale 1-5;1=bad, 5=excellent
Input=

 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original
Trilogy
 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
• Easy to keep ‘stable’; Casablanca still before Star Wars

6

Visualization

•  http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

7

Radix sort
•  Origins go back to the 1890 U.S. census
•  Radix = “the base of a number system”

–  Examples will use 10 because we are used to that
–  In implementations use larger numbers

•  For example, for ASCII strings, might use 128

•  Idea:
–  Bucket sort on one digit at a time

•  Number of buckets = radix
•  Starting with least significant digit
•  Keeping sort stable

–  Do one pass per digit
–  Invariant: After k passes (digits), the last k digits are sorted

8

Example

Radix = 10

Input: 478
 537

 9
 721

 3
 38
 143
 67

9

First pass:
 bucket sort by ones digit

1
 721

2 3

 3
143

4 5 6 7

537
 67

8

478
 38

9

 9

0

Order now: 721
 3

 143
 537
 67
 478
 38
 9

Example

10

Second pass:
 stable bucket sort by tens digit

1
 721

2 3

 3
143

4 5 6 7

537
 67

8

478
 38

9

 9

0

Order now: 3
 9

 721
 537

 38
 143

 67
 478

Radix = 10

Order was: 721
 3

 143
 537
 67
 478
 38
 9

1

2

721

3

537
 38

4

143

5 6

 67
7

478

8 9

0

 3
 9

Example

11

Third pass:
 stable bucket sort by 100s digit

Order now: 3
 9

 38
 67

 143
 478

 537
 721

Radix = 10

1
 143

2 3 4

478

5

537

6 7

721

8 9

0

 3
 9
 38
 67 Order was: 3

 9
 721

 537
 38

 143
 67
 478

1

2

721

3

537
 38

4

143

5 6

 67
7

478

8 9

0

 3
 9

Analysis
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not
–  Example: Strings of English letters up to length 15

•  Run-time proportional to: 15*(52 + n)
•  This is less than n log n only if n > 33,000
•  Of course, cross-over point depends on constant factors of

the implementations
–  And radix sort can have poor locality properties

12

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

13

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Sorting massive data

•  Need sorting algorithms that minimize disk/tape access time:
–  Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses
–  Merge sort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

•  Merge sort is the basis of massive sorting

•  Merge sort can leverage multiple disks

14 Fall 2013

External Merge Sort

•  Sort 900 MB using 100 MB RAM
–  Read 100 MB of data into memory
–  Sort using conventional method (e.g. quicksort)
–  Write sorted 100MB to temp file
–  Repeat until all data in sorted chunks (900/100 = 9 total)

•  Read first 10 MB of each sorted chuck, merge into remaining
10MB
–  writing and reading as necessary
–  Single merge pass instead of log n
–  Additional pass helpful if data much larger than memory

•  Parallelism and better hardware can improve performance
•  Distribution sorts (similar to bucket sort) are also used

15

Last Slide on Sorting
•  Simple O(n2) sorts can be fastest for small n

–  Selection sort, Insertion sort (latter linear for mostly-sorted)
–  Good for “below a cut-off” to help divide-and-conquer sorts

•  O(n log n) sorts
–  Heap sort, in-place but not stable nor parallelizable
–  Merge sort, not in place but stable and works as external sort
–  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
•  Ω (n log n) is worst-case and average lower-bound for sorting by

comparisons
•  Non-comparison sorts

–  Bucket sort good for small number of possible key values
–  Radix sort uses fewer buckets and more phases

•  Best way to sort? It depends!
16

Done with sorting! (phew..)

•  Moving on….

•  There are many many algorithm techniques in the world

–  We’ve learned a few

•  What are a few other “classic” algorithm techniques you should
at least have heard of?
–  And what are the main ideas behind how they work?

17

Algorithm Design Techniques

•  Greedy
–  Shortest path, minimum spanning tree, …

•  Divide and Conquer
–  Divide the problem into smaller subproblems,

solve them, and combine into the overall solution
–  Often done recursively
–  Quick sort, merge sort are great examples

•  Dynamic Programming
–  Brute force through all possible solutions, storing solutions to

subproblems to avoid repeat computation
•  Backtracking

–  A clever form of exhaustive search

18

Dynamic Programming: Idea

•  Divide a bigger problem into many smaller subproblems

•  If the number of subproblems grows exponentially, a recursive

solution may have an exponential running time L

•  Dynamic programming to the rescue! J

•  Often an individual subproblem occurs many times!
–  Store the results of subproblems in a table and re-use them

instead of recomputing them
–  Technique called memoization

19

Fibonacci Sequence: Recursive

•  The fibonacci sequence is a very famous number sequence
•  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
•  The next number is found by adding up the two numbers before it.
•  Recursive solution:

•  Exponential running time!
–  A lot of repeated computation

20

fib(int n) {
 if (n == 1 || n == 2) {
 return 1

 }
 return fib(n – 2) + fib(n – 1)
}

Repeated computation

21

f(7)

f(5)

f(3)

f(4)

f(1) f(2)

f(6)

f(4) f(5)

f(2) f(3)

f(3)

f(4)
f(1) f(2)

f(2) f(3)

f(1) f(2)

f(2) f(3)

f(1) f(2)
f(1) f(2)

Fibonacci Sequence: memoized

Now each call of fib(x) only gets computed once for each x!

22

fib(int n) {
 Map results = new Map()
 results.put(1, 1)
 results.put(2, 1)
 return fibHelper(n, results)

}
fibHelper(int n, Map results) {
 if (!results.contains(n)) {
 results.put(n, fibHelper(n-2)+fibHelper(n-1))
 }
 return results.get(n)
}

23

Dynamic Programming

•  Work “from the bottom up” & save the results of simpler
problems
–  solutions to simpler problems are used to compute the

solution to more complex problems

•  Used for optimization problems, especially ones that would
otherwise take exponential time
–  Must satisfy the principle of optimality i.e. the subsolutions

of an optimal solution of the problem are themselves
optimal solutions for their subproblems

Algorithm Design Techniques

•  Greedy
–  Shortest path, minimum spanning tree, …

•  Divide and Conquer
–  Divide the problem into smaller subproblems,

solve them, and combine into the overall solution
–  Often done recursively
–  Quick sort, merge sort are great examples

•  Dynamic Programming
–  Brute force through all possible solutions, storing solutions to

subproblems to avoid repeat computation
•  Backtracking

–  A clever form of exhaustive search

24

•  Backtracking is a technique used to solve problems with a large
search space, by systematically trying and eliminating possibilities.

•  A standard example of backtracking would be going through a maze.
–  At some point, you might have two options of which direction to go:

Junction
Portion A

Po
rt

io
n

B

Backtracking: Idea

25

Portion B

P
or

tio
n

A

One strategy would be to try going
through Portion A of the maze.

If you get stuck before you find your
way out, then you "backtrack" to the
junction.

At this point in time you know that
Portion A will NOT lead you out of the
maze,

so you then start searching in
Portion B

Backtracking

26

•  Clearly, at a single junction you could
have even more than 2 choices.

•  The backtracking strategy says to try
each choice, one after the other,
–  if you ever get stuck, "backtrack"

to the junction and try the next
choice.

•  If you try all choices and never found
a way out, then there IS no solution to
the maze.

B
C

A

Backtracking

27

28

Backtracking (animation)

start ?

?
dead end

dead end

?
?

dead end

dead end

?

success!

dead end

Backtracking
•  Dealing with the maze:

–  From your start point, you will iterate through each possible
starting move.

–  From there, you recursively move forward.
–  If you ever get stuck, the recursion takes you back to where

you were, and you try the next possible move.

•  Make sure you don't try too many possibilities,
–  Mark which locations in the maze have been visited already so

that no location in the maze gets visited twice.
–  If a place has already been visited, there is no point in trying to

reach the end of the maze from there again.

29

The neat thing about coding up backtracking is that it can be done
recursively, without having to do all the bookkeeping at once.

–  Instead, the stack of recursive calls does most of the
bookkeeping

–  (i.e., keeps track of which locations we’ve tried so far.)

Backtracking

30

•  Find an arrangement of 8 queens on a
single chess board such that no two
queens are attacking one another.

•  In chess, queens can move all the way
down any row, column or diagonal (so
long as no pieces are in the way).

–  Due to the first two restrictions, it's
clear that each row and column of the
board will have exactly one queen.

Backtracking: The 8 queens problem

31

The backtracking strategy is as follows:

1)  Place a queen on the first available
square in row 1.

2)  Move onto the next row, placing a
queen on the first available square
there (that doesn't conflict with the
previously placed queens).

3)  Continue in this fashion until either:
a)  You have solved the problem, or
b)  You get stuck.

When you get stuck, remove the
queens that got you there, until you
get to a row where there is another
valid square to try.

Animated Example:
http://www.hbmeyer.de/
backtrack/achtdamen/
eight.htm#up

Q
Q

Q
Q

Q Q

Continue…

Backtracking

32

•  Another possible brute-force algorithm is generate all possible
permutations of the numbers 1 through 8 (there are 8! = 40,320),
–  Use the elements of each permutation as possible positions in

which to place a queen on each row.
–  Reject those boards with diagonal attacking positions.

•  The backtracking algorithm does a bit better
–  constructs the search tree by considering one row of the board at

a time, eliminating most non-solution board positions at a very
early stage in their construction.

–  because it rejects row and diagonal attacks even on incomplete
boards, it examines only 15,720 possible queen placements.

•  15,720 is still a lot of possibilities to consider
–  Sometimes we have no other choice but to do the best we can J

Backtracking – 8 queens Analysis

33

Algorithm Design Techniques

•  Greedy
–  Shortest path, minimum spanning tree, …

•  Divide and Conquer
–  Divide the problem into smaller subproblems,

solve them, and combine into the overall solution
–  Often done recursively
–  Quick sort, merge sort are great examples

•  Dynamic Programming
–  Brute force through all possible solutions, storing solutions to

subproblems to avoid repeat computation
•  Backtracking

–  A clever form of exhaustive search

34

