
CSE373: Data Structure & Algorithms

Lecture 20: More Sorting

Lauren Milne
Summer 2015

Admin

•  Homework 5 due next Wednesday at 11pm!

2

The comparison sorting problem

Assume we have n comparable elements in an array and we want
to rearrange them to be in increasing order

Input:
–  An array A of data records
–  A key value in each data record
–  A comparison function (consistent and total)

Effect:
–  Reorganize the elements of A such that for any i and j,

if i < j then A[i] ≤ A[j]
–  (Also, A must have exactly the same data it started with)
–  Could also sort in reverse order, of course

An algorithm doing this is a comparison sort
3

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

4

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

https://www.youtube.com/watch?v=kPRA0W1kECg

Divide and conquer

Very important technique in algorithm design

1.  Divide problem into smaller parts

2.  Independently solve the simpler parts
–  Think recursion
–  Or potential parallelism

3.  Combine solution of parts to produce overall solution

5

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1.  Merge sort: Sort the left half of the elements (recursively)

 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole

2.  Quick sort: Pick a “pivot” element

 Divide elements into less-than pivot
 and greater-than pivot

 Sort the two divisions (recursively on each)
 Answer is sorted-less-than then pivot then
 sorted-greater-than

 6

Quick sort

•  A divide-and-conquer algorithm
–  Recursively chop into two pieces
–  Instead of doing all the work as we merge together,

we will do all the work as we recursively split into halves

–  Unlike merge sort, does not need auxiliary space

•  O(n log n) on average J, but O(n2) worst-case L

•  Faster than merge sort in practice?
–  Often believed so
–  Does fewer copies and more comparisons, so it depends on

the relative cost of these two operations!

7

Quicksort Overview

1.  Pick a pivot element

2.  Partition all the data into:
A.  The elements less than the pivot
B.  The pivot
C.  The elements greater than the pivot

3.  Recursively sort A and C

4.  The answer is, “as simple as A, B, C”

8

Think in Terms of Sets

9

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 81 92
43 65

31

57 26

75 0 S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
Quicksort(S1) and

Quicksort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

Example, Showing Recursion

10

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 Element

8 2 9 4 5 3 1 6

5

8 3

1

6 8 9

Details

Have not yet explained:

•  How to pick the pivot element

–  Any choice is correct: data will end up sorted
–  But as analysis will show, want the two partitions to be about

equal in size

•  How to implement partitioning
–  In linear time
–  In place

11

Pivots

•  Best pivot?
–  Median
–  Halve each time

•  Worst pivot?
–  Greatest/least element
–  Problem of size n - 1
–  O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

12

Potential pivot rules

While sorting arr from lo to hi-1 …

•  Pick arr[lo] or arr[hi-1]

–  Fast, but worst-case occurs with mostly sorted input

•  Pick random element in the range
–  Does as well as any technique, but (pseudo)random number

generation can be slow
–  Still probably the most elegant approach

•  Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
–  Common heuristic that tends to work well

13

Partitioning

•  Conceptually simple, but hardest part to code up correctly
–  After picking pivot, need to partition in linear time in place

•  One approach (there are slightly fancier ones):
1.  Swap pivot with arr[lo]
2.  Use two fingers i and j, starting at lo+1 and hi-1
3.   while (i < j)

 if (arr[j] > pivot) j--
 else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]

4.  Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

14

Example

•  Step one: pick pivot as median of 3
–  lo = 0, hi = 10

15

6 1 4 9 0 3 5 2 7 8 0 1 2 3 4 5 6 7 8 9

•  Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6 0 1 2 3 4 5 6 7 8 9

Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

16

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

Quick sort visualization

•  http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

17

Analysis

•  Best-case: Pivot is always the median
 T(0)=T(1)=1
 T(n)=2T(n/2) + n -- linear-time partition
 Same recurrence as merge sort: O(n log n)

•  Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1
 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

•  Average-case (e.g., with random pivot)

–  O(n log n), not responsible for proof (in text)

18

Cutoffs

•  For small n, all that recursion tends to cost more than doing a
quadratic sort
–  Remember asymptotic complexity is for large n

•  Common engineering technique: switch algorithm below a cutoff
–  Reasonable rule of thumb: use insertion sort for n < 10

•  Notes:
–  Could also use a cutoff for merge sort
–  Cutoffs are also the norm with parallel algorithms

•  Switch to sequential algorithm
–  None of this affects asymptotic complexity

19

Cutoff pseudocode

20

void quicksort(int[] arr, int lo, int hi) {
 if(hi – lo < CUTOFF)
 insertionSort(arr,lo,hi);
 else
 …
}

Notice how this cuts out the vast majority of the recursive calls
–  Think of the recursive calls to quicksort as a tree
–  Trims out the bottom layers of the tree

How Fast Can We Sort?

•  Heapsort & mergesort have O(n log n) worst-case running time

•  Quicksort has O(n log n) average-case running time

•  These bounds are all tight, actually Θ(n log n)

•  Comparison sorting in general is Ω (n log n)
–  An amazing computer-science result: proves all the clever

programming in the world cannot comparison-sort in linear
time

21

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

22

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How???
•  Change the model – assume
 more than “compare(a,b)”

Bucket Sort (a.k.a. BinSort)
•  If all values to be sorted are known to be integers between 1

and K (or any small range):
–  Create an array of size K
–  Put each element in its proper bucket (a.k.a. bin)
–  If data is only integers, no need to store more than a count of

how times that bucket has been used

•  Output result via linear pass through array of buckets

23

count array
1 3
2 1
3 2
4 2
5 3

•  Example:
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

Visualization

•  http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

24

Analyzing Bucket Sort

•  Overall: O(n+K)
–  Linear in n, but also linear in K
–  Ω(n log n) lower bound does not apply because this is not a

comparison sort

•  Good when K is smaller (or not much larger) than n
–  We don’t spend time doing comparisons of duplicates

•  Bad when K is much larger than n
–  Wasted space; wasted time during linear O(K) pass

•  For data in addition to integer keys, use list at each bucket

25

Bucket Sort with Data
•  Most real lists aren’t just keys; we have data
•  Each bucket is a list (say, linked list)
•  To add to a bucket, insert in O(1) (at beginning, or keep pointer to

last element)

count array

1

2

3

4

5

•  Example: Movie ratings;
scale 1-5;1=bad, 5=excellent
Input=

 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original
Trilogy
 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
• Easy to keep ‘stable’; Casablanca still before Star Wars

26

Radix sort
•  Radix = “the base of a number system”

–  Examples will use 10 because we are used to that
–  In implementations use larger numbers

•  For example, for ASCII strings, might use 128

•  Idea:
–  Bucket sort on one digit at a time

•  Number of buckets = radix
•  Starting with least significant digit
•  Keeping sort stable

–  Do one pass per digit
–  Invariant: After k passes (digits), the last k digits are sorted

•  Aside: Origins go back to the 1890 U.S. census

27

Example

Radix = 10

Input: 478
 537

 9
 721

 3
 38
 143
 67

28

First pass:
 bucket sort by ones digit

1
 721

2 3

 3
143

4 5 6 7

537
 67

8

478
 38

9

 9

0

Order now: 721
 3

 143
 537
 67
 478
 38
 9

Example

29

Second pass:
 stable bucket sort by tens digit

1
 721

2 3

 3
143

4 5 6 7

537
 67

8

478
 38

9

 9

0

Order now: 3
 9

 721
 537

 38
 143

 67
 478

Radix = 10

Order was: 721
 3

 143
 537
 67
 478
 38
 9

1

2

721

3

537
 38

4

143

5 6

 67
7

478

8 9

0

 3
 9

Example

30

Third pass:
 stable bucket sort by 100s digit

Order now: 3
 9

 38
 67

 143
 478

 537
 721

Radix = 10

1
 143

2 3 4

478

5

537

6 7

721

8 9

0

 3
 9
 38
 67 Order was: 3

 9
 721

 537
 38

 143
 67
 478

1

2

721

3

537
 38

4

143

5 6

 67
7

478

8 9

0

 3
 9

Visualization

•  http://www.cs.usfca.edu/~galles/visualization/RadixSort.html

31

Analysis
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not
–  Example: Strings of English letters up to length 15

•  Run-time proportional to: 15*(52 + n)
•  This is less than n log n only if n > 33,000
•  Of course, cross-over point depends on constant factors of

the implementations
–  And radix sort can have poor locality properties

32

Sorting massive data

•  Need sorting algorithms that minimize disk/tape access time:
–  Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses
–  Merge sort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

•  Merge sort is the basis of massive sorting

•  Merge sort can leverage multiple disks

33 Fall 2013

External Merge Sort

•  Sort 900 MB using 100 MB RAM
–  Read 100 MB of data into memory
–  Sort using conventional method (e.g. quicksort)
–  Write sorted 100MB to temp file
–  Repeat until all data in sorted chunks (900/100 = 9 total)

•  Read first 10 MB of each sorted chuck, merge into remaining
10MB
–  writing and reading as necessary
–  Single merge pass instead of log n
–  Additional pass helpful if data much larger than memory

•  Parallelism and better hardware can improve performance
•  Distribution sorts (similar to bucket sort) are also used

34

Last Slide on Sorting
•  Simple O(n2) sorts can be fastest for small n

–  Insertion sort (latter linear for mostly-sorted)
–  Good “below a cut-off” for divide-and-conquer sorts

•  O(n log n) sorts
–  Heap sort, in-place, not stable, not parallelizable
–  Merge sort, not in place but stable and works as external sort
–  Quick sort, in place, not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
•  Ω (n log n) is worst-case and average lower-bound for sorting by

comparisons
•  Non-comparison sorts

–  Bucket sort good for small number of possible key values
–  Radix sort uses fewer buckets and more phases

•  Best way to sort? It depends!
35

