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Admin 

 
•  Homework 5 due next Wednesday at 11pm! 
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The comparison sorting problem 

Assume we have n comparable elements in an array and we want 
to rearrange them to be in increasing order 

 

Input: 
–  An array A of data records 
–  A key value in each data record 
–  A comparison function (consistent and total) 

 

Effect: 
–  Reorganize the elements of A such that for any i and j,       

if i < j then A[i] ≤ A[j] 
–  (Also, A must have exactly the same data it started with) 
–  Could also sort in reverse order, of course 

An algorithm doing this is a comparison sort 
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Sorting: The Big Picture 

Surprising amount of neat stuff to say about sorting: 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort 
… 

Bucket sort 
Radix sort 

External 
sorting 

https://www.youtube.com/watch?v=kPRA0W1kECg 



Divide and conquer 

Very important technique in algorithm design 

1.  Divide problem into smaller parts 

2.  Independently solve the simpler parts  
–  Think recursion 
–  Or potential parallelism 

3.  Combine solution of parts to produce overall solution 
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Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 
 
1.  Merge sort:     Sort the left half of the elements (recursively) 

         Sort the right half of the elements (recursively) 
      Merge the two sorted halves into a sorted whole 

 
2.  Quick sort:     Pick a “pivot” element  

     Divide elements into less-than pivot  
       and greater-than pivot 

     Sort the two divisions (recursively on each) 
     Answer is sorted-less-than then pivot then     
                      sorted-greater-than 
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Quick sort 

•  A divide-and-conquer algorithm 
–  Recursively chop into two pieces 
–  Instead of doing all the work as we merge together,  

we will do all the work as we recursively split into halves 

–  Unlike merge sort, does not need auxiliary space 
 

•  O(n log n) on average J, but O(n2) worst-case L 

•  Faster than merge sort in practice? 
–  Often believed so 
–  Does fewer copies and more comparisons, so it depends on 

the relative cost of these two operations! 
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Quicksort Overview 

1.  Pick a pivot element 

2.  Partition all the data into: 
A.  The elements less than the pivot 
B.  The pivot 
C.  The elements greater than the pivot 

3.  Recursively sort A and C 

4.  The answer is, “as simple as A, B, C”  
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Think in Terms of Sets 
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13 
81 

92 
43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 81 92 
43 65 

31 

57 26 

75 0 S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
Quicksort(S1) and 

Quicksort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 



Example, Showing Recursion 
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2  4   3   1 8   9   6 

2   1 9 4 6 

        2                 

   1   2                    

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 
1 Element 

8 2 9 4 5 3 1 6 

5 

8 3 

1 

6   8   9 



Details 

Have not yet explained: 
 
•  How to pick the pivot element 

–  Any choice is correct: data will end up sorted 
–  But as analysis will show, want the two partitions to be about 

equal in size 

•  How to implement partitioning 
–  In linear time 
–  In place 
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Pivots 

•  Best pivot? 
–  Median 
–  Halve each time 

•  Worst pivot? 
–  Greatest/least element 
–  Problem of size n - 1 
–  O(n2) 

2  4   3   1 8   9   6 

8 2 9 4 5 3 1 6 

5 

8  2  9  4  5  3  6 

8 2 9 4 5 3 1 6 

1 
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Potential pivot rules 

While sorting arr from lo to hi-1 … 
 
•  Pick arr[lo] or arr[hi-1] 

–  Fast, but worst-case occurs with mostly sorted input 

•  Pick random element in the range 
–  Does as well as any technique, but (pseudo)random number 

generation can be slow 
–  Still probably the most elegant approach 

•  Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2] 
–  Common heuristic that tends to work well 
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Partitioning 

•  Conceptually simple, but hardest part to code up correctly 
–  After picking pivot, need to partition in linear time in place 

•  One approach (there are slightly fancier ones): 
1.  Swap pivot with arr[lo] 
2.  Use two fingers i and j, starting at lo+1 and hi-1 
3.   while (i < j) 

   if (arr[j] > pivot) j-- 
   else if (arr[i] < pivot) i++ 
   else swap arr[i] with arr[j] 

4.  Swap pivot with arr[i] * 

*skip step 4 if pivot ends up being least element 
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Example 

•  Step one: pick pivot as median of 3 
–  lo = 0, hi = 10 

15 

6 1 4 9 0 3 5 2 7 8 0 1 2 3 4 5 6 7 8 9 

•  Step two: move pivot to the lo position 

8 1 4 9 0 3 5 2 7 6 0 1 2 3 4 5 6 7 8 9 



Example 

Now partition in place 
 
 
Move fingers 
 
 
Swap 
 
Move fingers 
 
 
Move pivot 
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6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  
one swap during partition –  
this is a short example 

5 1 4 2 0 3 6 9 7 8 



Quick sort visualization 

•  http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html 
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Analysis 

•  Best-case: Pivot is always the median 
  T(0)=T(1)=1 
  T(n)=2T(n/2) + n           -- linear-time partition 
  Same recurrence as merge sort: O(n log n) 

 
•  Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 
              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 
 
•  Average-case (e.g., with random pivot) 

–  O(n log n), not responsible for proof (in text) 
 

18 



Cutoffs 

•  For small n, all that recursion tends to cost more than doing a 
quadratic sort 
–  Remember asymptotic complexity is for large n 

•  Common engineering technique: switch algorithm below a cutoff 
–  Reasonable rule of thumb: use insertion sort for n < 10 

•  Notes: 
–  Could also use a cutoff for merge sort 
–  Cutoffs are also the norm with parallel algorithms  

•  Switch to sequential algorithm 
–  None of this affects asymptotic complexity 
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Cutoff pseudocode 
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void quicksort(int[] arr, int lo, int hi) { 
  if(hi – lo < CUTOFF) 
     insertionSort(arr,lo,hi); 
  else 
     … 
} 

Notice how this cuts out the vast majority of the recursive calls  
–    Think of the recursive calls to quicksort as a tree 
–    Trims out the bottom layers of the tree 



How Fast Can We Sort? 

•  Heapsort & mergesort have O(n log n) worst-case running time 

•  Quicksort has O(n log n) average-case running time 

•  These bounds are all tight, actually Θ(n log n) 

•  Comparison sorting in general is Ω (n log n) 
–  An amazing computer-science result: proves all the clever 

programming in the world cannot comparison-sort in linear 
time 
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The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort (avg) 
… 

Bucket sort 
Radix sort 

External 
sorting 

How??? 
•   Change the model – assume     
   more than “compare(a,b)” 



Bucket Sort (a.k.a. BinSort) 
•  If all values to be sorted are known to be integers between 1 

and K (or any small range): 
–  Create an array of size K  
–  Put each element in its proper bucket (a.k.a. bin) 
–  If data is only integers, no need to store more than a count of 

how times that bucket has been used 

•  Output result via linear pass through array of buckets 
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count array 
1 3 
2 1 
3 2 
4 2 
5 3 

•  Example:  
K=5 
input (5,1,3,4,3,2,1,1,5,4,5) 
 

   output: 1,1,1,2,3,3,4,4,5,5,5 



Visualization 

•  http://www.cs.usfca.edu/~galles/visualization/CountingSort.html 
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Analyzing Bucket Sort 

•  Overall: O(n+K) 
–  Linear in n, but also linear in K 
–  Ω(n log n) lower bound does not apply because this is not a 

comparison sort 
 

•  Good when K is smaller (or not much larger) than n 
–  We don’t spend time doing comparisons of duplicates 

•  Bad when K is much larger than n 
–  Wasted space; wasted time during linear O(K) pass 
 

•  For data in addition to integer keys, use list at each bucket 
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Bucket Sort with Data 
•  Most real lists aren’t just keys; we have data 
•  Each bucket is a list (say, linked list) 
•  To add to a bucket, insert in O(1) (at beginning, or keep pointer to 

last element) 

count array 

1 

2 

3 

4 

5 

•  Example: Movie ratings; 
scale 1-5;1=bad, 5=excellent 
Input= 

 5: Casablanca 
 3: Harry Potter movies 
 5: Star Wars Original 
Trilogy 
 1: Rocky V 

Rocky V 

Harry Potter 

Casablanca Star Wars 

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars 
• Easy to keep ‘stable’; Casablanca still before Star Wars 
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Radix sort 
•  Radix = “the base of a number system” 

–  Examples will use 10 because we are used to that 
–  In implementations use larger numbers 

•  For example, for ASCII strings, might use 128 

•  Idea: 
–  Bucket sort on one digit at a time 

•  Number of buckets = radix 
•  Starting with least significant digit 
•  Keeping sort stable 

–  Do one pass per digit 
–  Invariant: After k passes (digits), the last k digits are sorted 

•  Aside: Origins go back to the 1890 U.S. census 
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Example 

Radix = 10 

 
Input:   478 
         537 

     9 
            721 

     3 
   38 
         143 
    67 
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First pass:  
 bucket sort by ones digit  

1
 721 

2 3 

    3 
143 

4 5 6 7 

537 
  67 

8 

478 
  38 

9 

    9 

0 

Order now: 721 
                   3 

                   143 
                   537 
                     67 
                   478 
                     38 
                       9 
   



Example 
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Second pass:  
 stable bucket sort by tens digit  

      

1
 721 

2 3 

    3 
143 

4 5 6 7 

537 
  67 

8 

478 
  38 

9 

    9 

0 

Order now:     3 
                   9 

                   721 
        537 

                     38 
        143 

                     67 
                   478 
   

Radix = 10 

Order was: 721 
                   3 

                   143 
                   537 
                     67 
                   478 
                     38 
                       9 
   

1
 

2 

721 

3 

537 
  38 

4 

143 

5 6 

  67 
7 

478 
   

8 9 

     

0 

    3 
    9 



Example 
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Third pass:  
 stable bucket sort by 100s digit  

      

Order now:     3 
                   9 

                     38 
          67 

                   143 
        478 

                   537 
                   721 
   

Radix = 10 

1
 143 

2 3 4 

478 

5 

537 

6 7 

721 
   

8 9 

     

0 

    3 
    9 
  38 
  67 Order was:     3 

                   9 
                   721 

        537 
                     38 

        143 
                     67 
                   478 
   

1
 

2 

721 

3 

537 
  38 

4 

143 

5 6 

  67 
7 

478 
   

8 9 

     

0 

    3 
    9 



Visualization 

•  http://www.cs.usfca.edu/~galles/visualization/RadixSort.html 
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Analysis 
Input size: n 
Number of buckets = Radix: B 
Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 
–  Example: Strings of English letters up to length 15 

•  Run-time proportional to: 15*(52 + n)  
•   This is less than n log n only if n > 33,000 
•  Of course, cross-over point depends on constant factors of 

the implementations 
–  And radix sort can have poor locality properties 
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Sorting massive data 

•  Need sorting algorithms that minimize disk/tape access time: 
–  Quicksort and Heapsort both jump all over the array, leading to 

expensive random disk accesses 
–  Merge sort scans linearly through arrays, leading to (relatively) 

efficient sequential disk access 

•  Merge sort is the basis of massive sorting 

•  Merge sort can leverage multiple disks 
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External Merge Sort 

•  Sort 900 MB using 100 MB RAM 
–  Read 100 MB of data into memory 
–  Sort using conventional method (e.g. quicksort) 
–  Write sorted 100MB to temp file 
–  Repeat until all data in sorted chunks (900/100 = 9 total) 

•  Read first 10 MB of each sorted chuck, merge into remaining 
10MB 
–  writing and reading as necessary 
–  Single merge pass instead of log n 
–  Additional pass helpful if data much larger than memory 

•  Parallelism and better hardware can improve performance 
•  Distribution sorts (similar to bucket sort) are also used 
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Last Slide on Sorting 
•  Simple O(n2) sorts can be fastest for small n 

–  Insertion sort (latter linear for mostly-sorted) 
–  Good “below a cut-off” for divide-and-conquer sorts 

•  O(n log n) sorts 
–  Heap sort, in-place, not stable, not parallelizable 
–  Merge sort, not in place but stable and works as external sort 
–  Quick sort, in place, not stable and O(n2) in worst-case 

•  Often fastest, but depends on costs of comparisons/copies 
•  Ω (n log n) is worst-case and average lower-bound for sorting by 

comparisons 
•  Non-comparison sorts 

–  Bucket sort good for small number of possible key values 
–  Radix sort uses fewer buckets and more phases 

•  Best way to sort?  It depends! 
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