

CSE373: Data Structure & Algorithms Lecture 20: More Sorting

Lauren Milne Summer 2015

Admin

• Homework 5 due next Wednesday at 11pm!

The comparison sorting problem

Assume we have *n* comparable elements in an array and we want to rearrange them to be in increasing order

Input:

- An array **A** of data records
- A key value in each data record
- A comparison function (consistent and total)

Effect:

- Reorganize the elements of A such that for any i and j,
 if i < j then A[i] ≤ A[j]
- (Also, **A** must have exactly the same data it started with)
- Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

https://www.youtube.com/watch?v=kPRA0W1kECg

Divide and conquer

Very important technique in algorithm design

- 1. Divide problem into smaller parts
- 2. Independently solve the simpler parts
 - Think recursion
 - Or potential parallelism
- 3. Combine solution of parts to produce overall solution

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

- Merge sort: Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole
- 2. Quick sort: Pick a "pivot" element Divide elements into less-than pivot and greater-than pivot Sort the two divisions (recursively on each) Answer is sorted-less-than then pivot then sorted-greater-than

Quick sort

- A divide-and-conquer algorithm
 - Recursively chop into two pieces
 - Instead of doing all the work as we merge together, we will do all the work as we recursively split into halves
 - Unlike merge sort, does not need auxiliary space
- $O(n \log n)$ on average \odot , but $O(n^2)$ worst-case \otimes
- Faster than merge sort in practice?
 - Often believed so
 - Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

Quicksort Overview

- 1. Pick a pivot element
- 2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot
- 3. Recursively sort A and C
- 4. The answer is, "as simple as A, B, C"

Think in Terms of Sets

[Weiss]

Example, Showing Recursion

10

Details

Have not yet explained:

- How to pick the pivot element
 - Any choice is correct: data will end up sorted
 - But as analysis will show, want the two partitions to be about equal in size
- How to implement partitioning
 - In linear time
 - In place

Pivots

- Best pivot?
 - Median
 - Halve each time

- Worst pivot?
 - Greatest/least element
 - Problem of size n 1
 - $O(n^2)$

Potential pivot rules

While sorting arr from lo to hi-1 ...

• Pick arr[lo] Or arr[hi-1]

- Fast, but worst-case occurs with mostly sorted input

- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - Still probably the most elegant approach
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]

Common heuristic that tends to work well

Partitioning

- Conceptually simple, but hardest part to code up correctly
 - After picking pivot, need to partition in linear time in place
- One approach (there are slightly fancier ones):
 - 1. Swap pivot with **arr[lo]**
 - 2. Use two fingers i and j, starting at lo+1 and hi-1

```
3. while (i < j)
    if (arr[j] > pivot) j--
    else if (arr[i] < pivot) i++
    else swap arr[i] with arr[j]</pre>
```

4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Example

- Step one: pick pivot as median of 3
 - 1o = 0, hi = 10

0	1	2	3	4	5	6	7	8	9
8	1	4	9	0	3	5	2	7	6

• Step two: move pivot to the lo position

Example

Often have more than one swap during partition – this is a short example

Quick sort visualization

• <u>http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html</u>

Analysis

• Best-case: Pivot is always the median

T(0)=T(1)=1 T(n)=2T(n/2) + n -- linear-time partition Same recurrence as merge sort: $O(n \log n)$

- Worst-case: Pivot is always smallest or largest element T(0)=T(1)=1 T(n) = 1T(n-1) + n Basically same recurrence as selection sort: O(n²)
- Average-case (e.g., with random pivot)

- $O(n \log n)$, not responsible for proof (in text)

Cutoffs

- For small *n*, all that recursion tends to cost more than doing a quadratic sort
 - Remember asymptotic complexity is for large *n*
- Common engineering technique: switch algorithm below a cutoff
 Reasonable rule of thumb: use insertion sort for *n* < 10
- Notes:
 - Could also use a cutoff for merge sort
 - Cutoffs are also the norm with parallel algorithms
 - Switch to sequential algorithm
 - None of this affects asymptotic complexity

Cutoff pseudocode

```
void quicksort(int[] arr, int lo, int hi) {
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi);
    else
        ...
}</pre>
```

Notice how this cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

How Fast Can We Sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- Comparison sorting in general is Ω ($n \log n$)
 - An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a *count* of how times that bucket has been used
- Output result via linear pass through array of buckets

count array						
1	3					
2	1					
3	2					
4	2					
5	3					

• Example:

K=5 input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

Visualization

• <u>http://www.cs.usfca.edu/~galles/visualization/CountingSort.html</u>

Analyzing Bucket Sort

- Overall: O(n+K)
 - Linear in *n*, but also linear in *K*
 - Ω(n log n) lower bound does not apply because this is not a comparison sort
- Good when *K* is smaller (or not much larger) than *n*
 - We don't spend time doing comparisons of duplicates
- Bad when *K* is much larger than *n*
 - Wasted space; wasted time during linear O(K) pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren't just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in O(1) (at beginning, or keep pointer to last element)

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star WarsEasy to keep 'stable'; Casablanca still before Star Wars

Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit
 - Keeping sort stable
 - Do one pass per digit
 - Invariant: After *k* passes (digits), the last *k* digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

Input:	478 537	First pass:	Order now: 721				
	9	bucket sort by ones digit	143				
	721		537				
	3		67				
	38		478				
	143		38				
	67		9				

	0	1	2	3	4	5	6	7	8	9	
Example	3 9		721	537 38	143		67	478			
Radix = 10											
	0	1	2	3	4	5	6	7	8	9	
	3 9 38	143			478	537		721			
Order was: 3 9 721 537	67 Order now: Third pass: stable bucket sort by 100s digit									3 9 38 67	
143 67 478									1 4 5 7	43 78 37 21 30	

Visualization

• <u>http://www.cs.usfca.edu/~galles/visualization/RadixSort.html</u>

Analysis

Input size: *n* Number of buckets = Radix: *B* Number of passes = "Digits": *P*

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Run-time proportional to: $15^*(52 + n)$
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations

- And radix sort can have poor locality properties

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Merge sort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Merge sort is the basis of massive sorting
- Merge sort can leverage multiple disks

External Merge Sort

- Sort 900 MB using 100 MB RAM
 - Read 100 MB of data into memory
 - Sort using conventional method (e.g. quicksort)
 - Write sorted 100MB to temp file
 - Repeat until all data in sorted chunks (900/100 = 9 total)
- Read first 10 MB of each sorted chuck, merge into remaining 10MB
 - writing and reading as necessary
 - Single merge pass instead of *log n*
 - Additional pass helpful if data much larger than memory
- Parallelism and better hardware can improve performance
- Distribution sorts (similar to bucket sort) are also used

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - Insertion sort (latter linear for mostly-sorted)
 - Good "below a cut-off" for divide-and-conquer sorts
- *O*(*n* log *n*) sorts
 - Heap sort, in-place, not stable, not parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place, not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- Ω (*n* log *n*) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of possible key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!