
CSE373: Data Structures & Algorithms

Lecture 18: Minimum Spanning Trees

Lauren Milne
Summer 2015

Announcements

•  Homework 3 graded and comments out
•  Homework 5 is out

–  Due next Wednesday
–  Can be done with partners

•  List partner on files

2

So far

•  We’ve figured out how to
–  Find the shortest paths between a vertex and all other

vertices
•  Breadth First Search (unweighted graph)
•  Dijsktra (weighted graph)

–  Find a spanning tree on an unweighted graph
•  Graph Traversal (we did DFS)
•  Pick random edges and see if it connects the graph (use

Union Find)
•  Next up

–  Find a minimum spanning tree on a weighted graph
•  Prim’s algorithm
•  Kruskal’s algorithm

3

Minimum Spanning Trees

The minimum-spanning-tree problem
–  Given a weighted undirected graph, compute a spanning

tree of minimum weight

4

Two different approaches

5

Prim’s Algorithm Idea

6

Prim’s vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where
cost = distance from this vertex to the known set
(in other words, the cost of the smallest edge connecting this vertex

to the known set)

Otherwise identical J

7

Prim’s Algorithm

8

1.  For each node v, set v.cost = ∞ and v.known = false
2.  Choose any node v

a)  Mark v as known
b)  For each edge (v,u) with weight w, set u.cost=w and

u.prev=v
3.  While there are unknown nodes in the graph

a)  Select the unknown node v with lowest cost
b)  Mark v as known and add (v, v.prev) to output
c)  For each edge (v,u) with weight w,

 if(w < u.cost) {
 u.cost = w;
 u.prev = v;
 }

Prim’s Example

9

A B

C
D

F

E

G

∞

∞

∞

∞
∞

∞

2

1
2

vertex known? cost prev
A ??
B ??
C ??
D ??
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

∞

Prim’s Example

10

A B

C
D

F

E

G

0 2

∞

2

1
∞

∞

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Prim’s Example

11

A B

C
D

F

E

G

0 2

6

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D

5

1
1

1

2 6
5 3

10

Prim’s Example

12

A B

C
D

F

E

G

0 2

2

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

5

1
1

1

2 6
5 3

10

Prim’s Example

13

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Prim’s Example

14

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Prim’s Example

15

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Prim’s Example

16

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

5

1
1

1

2 6
5 3

10

Analysis

•  Correctness
–  A bit tricky
–  Intuitively similar to Dijkstra

•  Run-time
–  Same as Dijkstra
–  O(|E|log|V|) using a priority queue

•  Costs/priorities are just edge-costs, not path-costs

17

A cable company wants to connect five villages to their network
which currently extends to the town of Avonford. What is the
minimum length of cable needed?

Avonford Fingley

Brinleigh Cornwell

Donster

Edan

2

7

4
5

8 6 4

5

3

8

Another Example

18

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

Model the situation as a
graph and find the MST
that connects all the
villages (nodes).

19

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select any vertex

A

Select the shortest
edge connected to
that vertex

AB 3

Prim’s Algorithm

20

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

AE 4

Prim’s Algorithm

21

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

ED 2

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

22

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

DC 4

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

23

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

EF 5

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

24

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

All vertices have been
connected.

The solution is

AB 3
AE 4
ED 2
DC 4
EF 5

Total weight of tree: 18

Prim’s Algorithm

25

Minimum Spanning Tree Algorithms

•  Prim’s Algorithm for Minimum Spanning Tree
–  Similar idea to Dijkstra’s Algorithm but for MSTs.
–  Both based on expanding cloud of known vertices

•  Kruskal’s Algorithm for Minimum Spanning Tree
–  Another, but different, greedy MST algorithm.
–  Uses the Union-Find data structure.

26

Kruskal’s Algorithm

27

Kruskal’s Algorithm Pseudocode

1.  Sort edges by weight (better: put in min-heap)
2.  Each node in its own set
3.  While output size < |V|-1

–  Consider next smallest edge (u,v)
–  if find(u) and find(v) indicate u and v are in different

sets
•  output (u,v)
•  union(find(u),find(v))

invariant:
 u and v in same set if and only if connected in output-so-far

28

Kruskal’s Example

29

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

30

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

31

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

32

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

33

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

34

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

35

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

36

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Example

37

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Kruskal’s Algorithm Analysis
Idea: Grow a forest out of edges that do not grow a cycle
But now consider the edges in order by weight

So:
–  Sort edges: O(|E|log |E|) (next lecture)
–  Iterate through edges using union-find for cycle detection

almost O(|E|)

Somewhat better:
–  Build min-heap with edges O(|E|) (Floyd’s algorithm)
–  Iterate through edges using union-find for cycle detection and
deleteMin to get next edge O(|E| log |E|)

–  Not better worst-case asymptotically, but often stop long
before considering all edges.

38

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

List the edges in
order of size:

ED 2
AB 3
AE 4
CD 4
BC 5
EF 5
CF 6
AF 7
BF 8
CF 8

Kruskal’s Algorithm

39

Select the edge
with min cost

ED 2

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

40

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3

 A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

41

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3
CD 4 (or AE 4)

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

42

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3
CD 4
AE 4

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

43

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3
CD 4
AE 4
BC 5 – forms a cycle
EF 5

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

44

All vertices have been
connected.

The solution is

ED 2
AB 3
CD 4
AE 4
EF 5

Total weight of tree: 18

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Kruskal’s Algorithm

45

Done with graph algorithms!

Next lecture…
•  Sorting
•  More sorting
•  Even more sorting

 J

46

Homework 5

•  Due 11pm next Wednesday
•  You may work with a partner
•  Create graph representation in MyGraph.java

–  adjacency list or adjacency matrix
–  don’t change constructor!
–  deal with edge cases/exceptions as outlined in html
–  probably want to use map to look up info about some vertex

•  Compute shortestPath() using Dijkstra’s
–  not required to use priority queue to store un-explored

vertices
–  use equals, not == to determine if same vertex, FindPaths()

create copies of vertices
–  finish FindPaths.java so it prints correct output

•  Test and Readme 47

