

CSE373: Data Structures & Algorithms

Lecture 18: Minimum Spanning Trees

Lauren Milne Summer 2015

Announcements

- Homework 3 graded and comments out
- Homework 5 is out
 - Due next Wednesday
 - Can be done with partners
 - List partner on files

So far

- We've figured out how to
 - Find the shortest paths between a vertex and all other vertices
 - Breadth First Search (unweighted graph)
 - Dijsktra (weighted graph)
 - Find a spanning tree on an unweighted graph
 - Graph Traversal (we did DFS)
 - Pick random edges and see if it connects the graph (use Union Find)
- Next up
 - Find a minimum spanning tree on a weighted graph
 - · Prim's algorithm
 - Kruskal's algorithm

Minimum Spanning Trees

The minimum-spanning-tree problem

 Given a weighted undirected graph, compute a spanning tree of minimum weight

Given an undirected graph G=(V,E), find a graph G'=(V, E') such that:

- E' is a subset of E
- |E'| = |V| 1
- G' is connected

G' is a minimum spanning tree.

Two different approaches

Prim's Algorithm
Almost identical to Dijkstra's

Prim's Algorithm Idea

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

A *node-based* greedy algorithm Builds MST by greedily adding nodes

Prim's vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = distance to the source.

Prim's pick the unknown vertex with smallest cost where

cost = distance from this vertex to the known set

(in other words, the cost of the smallest edge connecting this vertex to the known set)

Otherwise identical ©

- 1. For each node \mathbf{v} , set $\mathbf{v}.\mathsf{cost} = \infty$ and $\mathbf{v}.\mathsf{known} = \mathsf{false}$
- 2. Choose any node **v**
 - a) Mark v as known
 - b) For each edge (v,u) with weight w, set u.cost=w and u.prev=v
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node **v** with lowest cost
 - b) Mark v as known and add (v, v.prev) to output
 - c) For each edge (v,u) with weight w,

```
if(w < u.cost) {
   u.cost = w;
   u.prev = v;
}</pre>
```


vertex	known?	cost	prev
Α		??	
В		??	
С		??	
D		??	
Е		??	
F		??	
G		??	

vertex	known?	cost	prev
Α	Υ	0	
В		2	Α
С		2	Α
D		1	Α
E		??	
F		??	
G		??	

vertex	known?	cost	prev
Α	Υ	0	
В		2	Α
С		1	D
D	Υ	1	Α
E		1	D
F		6	D
G		5	D

vertex	known?	cost	prev
Α	Υ	0	
В		2	Α
С	Υ	1	D
D	Υ	1	Α
E		1	D
F		2	С
G		5	D

vertex	known?	cost	prev
А	Υ	0	
В		1	Е
С	Υ	1	D
D	Υ	1	Α
E	Υ	1	D
F		2	С
G		3	Е

vertex	known?	cost	prev
Α	Υ	0	
В	Υ	1	Е
С	Υ	1	D
D	Υ	1	Α
Е	Υ	1	D
F		2	С
G		3	E

vertex	known?	cost	prev
Α	Υ	0	
В	Υ	1	Е
С	Υ	1	D
D	Υ	1	Α
Е	Υ	1	D
F	Υ	2	С
G		3	E

vertex	known?	cost	prev
Α	Υ	0	
В	Υ	1	Е
С	Υ	1	D
D	Υ	1	Α
Е	Υ	1	D
F	Υ	2	С
G	Y	3	E

Analysis

- Correctness
 - A bit tricky
 - Intuitively similar to Dijkstra

- Run-time
 - Same as Dijkstra
 - O(|E|log|V|) using a priority queue
 - Costs/priorities are just edge-costs, not path-costs

Another Example

A cable company wants to connect five villages to their network which currently extends to the town of Avonford. What is the minimum length of cable needed?

Model the situation as a graph and find the MST that connects all the villages (nodes).

Select any vertex

Α

Select the shortest edge connected to that vertex

AB 3

Select the shortest edge that connects an unknown vertex to any known vertex.

AE 4

Select the shortest edge that connects an unknown vertex to any known vertex.

ED 2

Select the shortest edge that connects an unknown vertex to any known vertex.

DC 4

Select the shortest edge that connects an unknown vertex to any known vertex.

EF 5

Minimum Spanning Tree Algorithms

- Prim's Algorithm for Minimum Spanning Tree
 - Similar idea to Dijkstra's Algorithm but for MSTs.
 - Both based on expanding cloud of known vertices
- Kruskal's Algorithm for Minimum Spanning Tree
 - Another, but different, greedy MST algorithm.
 - Uses the Union-Find data structure.

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

An edge-based greedy algorithm Builds MST by greedily adding edges

Kruskal's Algorithm Pseudocode

- 1. Sort edges by weight (better: put in min-heap)
- 2. Each node in its own set
- 3. While output size < |V|-1
 - Consider next smallest edge (u,v)
 - if find(u) and find(v) indicate u and v are in different sets
 - output (u,v)
 - union(find(u),find(v))

invariant:

u and **v** in same set if and only if connected in output-so-far

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output:

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D)

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D)

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E)

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Kruskal's Algorithm Analysis

Idea: Grow a forest out of edges that do not grow a cycle
But now consider the edges in order by weight

So:

- Sort edges: O(|E|log |E|) (next lecture)
- Iterate through edges using union-find for cycle detection almost O(|E|)

Somewhat better:

- Build min-heap with edges O(|E|) (Floyd's algorithm)
- Iterate through edges using union-find for cycle detection and deleteMin to get next edge O(|E|log|E|)
- Not better worst-case asymptotically, but often stop long before considering all edges.

List the edges in order of size:

Select the edge with min cost

ED 2

Select the next minimum cost edge that does not create a cycle

ED 2 AB 3

Select the next minimum cost edge that does not create a cycle

ED 2 AB 3 CD 4 (or AE 4)

Select the next minimum cost edge that does not create a cycle

ED 2

AB 3

CD 4

AE 4

Select the next minimum cost edge that does not create a cycle

ED 2
AB 3
CD 4
AE 4
BC 5 – forms a cycle
EF 5

All vertices have been

Done with graph algorithms!

Next lecture...

- Sorting
- More sorting
- Even more sorting

Homework 5

- Due 11pm next Wednesday
- You may work with a partner
- Create graph representation in MyGraph.java
 - adjacency list or adjacency matrix
 - don't change constructor!
 - deal with edge cases/exceptions as outlined in html
 - probably want to use map to look up info about some vertex
- Compute shortestPath() using Dijkstra's
 - not required to use priority queue to store un-explored vertices
 - use equals, not == to determine if same vertex, FindPaths()
 create copies of vertices
 - finish FindPaths.java so it prints correct output
- Test and Readme