CSE373: Data Structures \& Algorithms
Lecture 18: Minimum Spanning Trees

Lauren Milne
Summer 2015

Announcements

- Homework 3 graded and comments out
- Homework 5 is out
- Due next Wednesday
- Can be done with partners
- List partner on files

So far

- We've figured out how to
- Find the shortest paths between a vertex and all other vertices
- Breadth First Search (unweighted graph)
- Dijsktra (weighted graph)
- Find a spanning tree on an unweighted graph
- Graph Traversal (we did DFS)
- Pick random edges and see if it connects the graph (use Union Find)
- Next up
- Find a minimum spanning tree on a weighted graph
- Prim's algorithm
- Kruskal's algorithm

Minimum Spanning Trees

The minimum-spanning-tree problem

- Given a weighted undirected graph, compute a spanning tree of minimum weight

Given an undirected graph $G=(V, E)$, find a graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that:

- E^{\prime} is a subset of E
- |E' $|=|V|-1$
- G^{\prime} is connected

G^{\prime} is a minimum spanning tree.

Two different approaches

Prim's Algorithm
Almost identical to Dijkstra's

Kruskals's Algorithm Completely different!

Prim's Algorithm Idea

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

A node-based greedy algorithm
 Builds MST by greedily adding nodes

Prim's vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost $=$ distance to the source.

Prim's pick the unknown vertex with smallest cost where cost $=$ distance from this vertex to the known set (in other words, the cost of the smallest edge connecting this vertex to the known set)

Otherwise identical ©

Prim's Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Choose any node v
a) Mark vas known
b) For each edge (v, u) with weight w, set u.cost=w and u.prev=v
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (\mathbf{v}, u) with weight w ,

$$
\left.\begin{array}{l}
\text { if }(w<u \cdot \operatorname{cost})\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=v ;
\end{array}\right\}
$$

Prim's Example

vertex	known?	cost	prev
A		$? ?$	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Prim's Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		2	A
D		1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Prim's Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		1	D
D	Y	1	A
E		1	D
F		6	D
G		5	D

Prim's Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C	Y	1	D
D	Y	1	A
E		1	D
F		2	C
G		5	D

Prim's Example

vertex	known?	cost	prev
A	Y	0	
B		1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Prim's Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Prim's Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G		3	E

Prim's Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G	Y	3	E

Analysis

- Correctness
- A bit tricky
- Intuitively similar to Dijkstra
- Run-time
- Same as Dijkstra
- $O(|E| \log |\mathrm{V}|)$ using a priority queue
- Costs/priorities are just edge-costs, not path-costs

Another Example

A cable company wants to connect five villages to their network which currently extends to the town of Avonford. What is the minimum length of cable needed?

Edan

Prim's Algorithm

Prim's Algorithm

Select any vertex
A
Select the shortest edge connected to that vertex

AB 3

Prim's Algorithm

Select the shortest edge that connects an unknown vertex to any known vertex.

AE 4

Prim's Algorithm

Select the shortest edge that connects an unknown vertex to any known vertex.

ED 2

Prim's Algorithm

Select the shortest edge that connects an unknown vertex to any known vertex.

DC 4

Prim's Algorithm

Select the shortest edge that connects an unknown vertex to any known vertex.

EF 5

Prim's Algorithm

All vertices have been connected.

The solution is
AB 3
AE 4
ED 2
DC 4 EF 5

Total weight of tree: 18

Minimum Spanning Tree Algorithms

- Prim's Algorithm for Minimum Spanning Tree
- Similar idea to Dijkstra's Algorithm but for MSTs.
- Both based on expanding cloud of known vertices
- Kruskal's Algorithm for Minimum Spanning Tree
- Another, but different, greedy MST algorithm.
- Uses the Union-Find data structure.

Kruskal's Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

An edge-based greedy algorithm Builds MST by greedily adding edges

Kruskal's Algorithm Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size $<|\mathbf{V}|-1$

- Consider next smallest edge (u,v)
- if find (u) and find (v) indicate u and v are in different sets
- output (u,v)
- union(find(u), find(v))
invariant:
u and v in same set if and only if connected in output-so-far

Kruskal's Example

Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Kruskal's Algorithm Analysis

Idea: Grow a forest out of edges that do not grow a cycle But now consider the edges in order by weight

So:

- Sort edges: $O(|E| \log |E|)$ (next lecture)
- Iterate through edges using union-find for cycle detection almost O (|E])

Somewhat better:

- Build min-heap with edges $O(|E|)$ (Floyd's algorithm)
- Iterate through edges using union-find for cycle detection and deleteMin to get next edge $O(|E| \log |E|)$
- Not better worst-case asymptotically, but often stop long before considering all edges.

Kruskal's Algorithm

Kruskal's Algorithm

Select the edge with min cost

ED 2

Kruskal's Algorithm

Select the next minimum cost
edge that does not create a cycle

ED 2
AB 3

Kruskal's Algorithm

Select the next minimum cost
 edge that does not create a cycle

ED 2
AB 3
CD 4 (or AE 4)

Kruskal's Algorithm

Select the next
minimum cost
edge that does not create a cycle

ED 2
AB 3
CD 4
AE 4

Kruskal's Algorithm

Kruskal's Algorithm

All vertices have been connected.

The solution is
ED 2
AB 3
CD 4
AE 4
EF 5

Total weight of tree: 18

Done with graph algorithms!

Next lecture...

- Sorting
- More sorting
- Even more sorting
©

Homework 5

- Due 11pm next Wednesday
- You may work with a partner
- Create graph representation in MyGraph.java
- adjacency list or adjacency matrix
- don't change constructor!
- deal with edge cases/exceptions as outlined in html
- probably want to use map to look up info about some vertex
- Compute shortestPath() using Dijkstra's
- not required to use priority queue to store un-explored vertices
- use equals, not == to determine if same vertex, FindPaths() create copies of vertices
- finish FindPaths.java so it prints correct output
- Test and Readme

