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Announcements 

 
•  Homework 3 graded and comments out 
•  Homework 5 is out 

–  Due next Wednesday  
–  Can be done with partners 

•  List partner on files 
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So far 

•  We’ve figured out how to 
–  Find the shortest paths between a vertex and all other 

vertices 
•  Breadth First Search (unweighted graph) 
•  Dijsktra (weighted graph) 

–  Find a spanning tree on an unweighted graph 
•  Graph Traversal (we did DFS) 
•  Pick random edges and see if it connects the graph (use 

Union Find) 
•  Next up 

–  Find a minimum spanning tree on a weighted graph 
•  Prim’s algorithm 
•  Kruskal’s algorithm 
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Minimum Spanning Trees 

The minimum-spanning-tree problem 
–  Given a weighted undirected graph, compute a spanning 

tree of minimum weight 
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Two different approaches 
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Prim’s Algorithm Idea 
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Prim’s vs. Dijkstra’s 

Recall:  
 
Dijkstra picked the unknown vertex with smallest cost where  
cost = distance to the source.  
 
Prim’s pick the unknown vertex with smallest cost where  
cost = distance from this vertex to the known set  
(in other words, the cost of the smallest edge connecting this vertex 

to the known set) 
 
Otherwise identical J  
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Prim’s Algorithm 
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1.  For each node v, set  v.cost = ∞ and v.known = false 
2.  Choose any node v  

a)  Mark v as known 
b)  For each edge (v,u) with weight w, set u.cost=w and 

u.prev=v 
3.  While there are unknown nodes in the graph 

a)  Select the unknown node v with lowest cost 
b)  Mark v as known and add (v, v.prev) to output 
c)  For each edge (v,u) with weight w, 

      if(w < u.cost) { 
          u.cost = w; 
     u.prev = v; 
      } 
  



Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Prim’s Example 

13 

A B 

C 
D 

F 

E 

G 

0 1 

2 

2 

1 
1 

3 

2 

1 
2 

vertex known? cost prev 
A Y 0 
B 1 E 
C Y 1 D 
D Y 1 A 
E Y 1 D 
F 2 C 
G 3 E 

5 

1 
1 

1 

2 6 
5 3 

10 



Prim’s Example 
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Prim’s Example 
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Prim’s Example 
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Analysis 

•  Correctness  
–  A bit tricky 
–  Intuitively similar to Dijkstra 

•  Run-time 
–  Same as Dijkstra 
–  O(|E|log|V|) using a priority queue 

•  Costs/priorities are just edge-costs, not path-costs 
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A cable company wants to connect five villages to their network     
which currently extends to the town of Avonford. What is the 
minimum length of cable needed? 

Avonford Fingley 

Brinleigh Cornwell 
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Another Example 
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Prim’s Algorithm 

Model the situation as a 
graph and find the MST 
that connects all the 
villages (nodes). 
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Select any vertex 
 
A 
 
Select the shortest 
edge connected to 
that vertex 
 
AB  3 
 
 
 

Prim’s Algorithm 
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Select the shortest 
edge that connects  
an unknown vertex to  
any known vertex. 
 
AE  4 
 
 
 

Prim’s Algorithm 
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Select the shortest 
edge that connects  
an unknown vertex to  
any known vertex. 
 
ED  2 
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Prim’s Algorithm 
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Select the shortest 
edge that connects  
an unknown vertex to  
any known vertex. 
 
DC  4 
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Prim’s Algorithm 
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Select the shortest 
edge that connects  
an unknown vertex to  
any known vertex. 
 
EF  5   
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Prim’s Algorithm 
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All vertices have been 
connected. 
 
The solution is 
 
AB 3 
AE 4 
ED 2 
DC 4 
EF 5 
 
 
Total weight of tree: 18 
 

Prim’s Algorithm 
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Minimum Spanning Tree Algorithms 

•  Prim’s Algorithm for Minimum Spanning Tree 
–  Similar idea to Dijkstra’s Algorithm but for MSTs. 
–  Both based on expanding cloud of known vertices  

•  Kruskal’s Algorithm for Minimum Spanning Tree 
–  Another, but different, greedy MST algorithm.  
–  Uses the Union-Find data structure.  
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Kruskal’s Algorithm 
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Kruskal’s Algorithm Pseudocode 

1.  Sort edges by weight (better: put in min-heap) 
2.  Each node in its own set 
3.  While output size < |V|-1 

–  Consider next smallest edge (u,v) 
–  if find(u) and find(v) indicate u and v are in different 

sets 
•   output (u,v) 
•   union(find(u),find(v)) 

invariant:  
 u and v in same set if and only if connected in output-so-far 
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Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) 

Note: At each step, the union/find sets are the trees in the forest 



Kruskal’s Algorithm Analysis 
Idea: Grow a forest out of edges that do not grow a cycle 
But now consider the edges in order by weight 
 

So:  
–  Sort edges: O(|E|log |E|) (next lecture) 
–  Iterate through edges using union-find for cycle detection 

almost O(|E|) 
 

Somewhat better: 
–  Build min-heap with edges O(|E|) (Floyd’s algorithm) 
–  Iterate through edges using union-find for cycle detection and 
deleteMin to get next edge O(|E| log |E|) 

–  Not better worst-case asymptotically, but often stop long 
before considering all edges. 
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List the edges in 
order of size: 
 
ED  2 
AB  3 
AE  4 
CD  4 
BC  5 
EF  5 
CF  6 
AF  7 
BF  8 
CF  8 
 

Kruskal’s Algorithm 
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Select the edge 
with min cost 
 
ED  2 
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Kruskal’s Algorithm 
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Select the next  
minimum cost 
edge that does not 
create a cycle 
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Kruskal’s Algorithm 
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Select the next  
minimum cost 
edge that does not 
create a cycle 
 
ED  2 
AB  3 
CD  4 (or AE  4) 
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Kruskal’s Algorithm 

42 



Select the next  
minimum cost 
edge that does not 
create a cycle 
 
ED  2 
AB  3 
CD  4  
AE  4 
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Kruskal’s Algorithm 
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Select the next  
minimum cost 
edge that does not 
create a cycle 
 
ED  2 
AB  3 
CD  4  
AE  4 
BC  5 – forms a cycle 
EF  5 
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Kruskal’s Algorithm 
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All vertices have been 
connected. 
 
The solution is 
 
ED  2 
AB  3 
CD  4  
AE  4 
EF  5 
 
 
Total weight of tree: 18 
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Kruskal’s Algorithm 

45 



Done with graph algorithms! 

Next lecture… 
•  Sorting 
•  More sorting 
•  Even more sorting 

 J 
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Homework 5 

•  Due 11pm next Wednesday 
•  You may work with a partner 
•  Create graph representation in MyGraph.java 

–  adjacency list or adjacency matrix 
–  don’t change constructor! 
–  deal with edge cases/exceptions as outlined in html 
–  probably want to use map to look up info about some vertex 

•  Compute shortestPath() using Dijkstra’s 
–  not required to use priority queue to store un-explored 

vertices 
–  use equals, not == to determine if same vertex, FindPaths() 

create copies of vertices 
–  finish FindPaths.java so it prints correct output 

•  Test and Readme 47 


