CSE373: Data Structures \& Algorithms Lecture 17: Dijkstra's Algorithm

Lauren Milne
Summer 2015

Announcements

- Homework 4 due tonight
- Homework 5 out today

Dijkstra's Algorithm: Lowest cost paths

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
- Pick closest unknown vertex v
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from \mathbf{v}
- That's it!

The Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Set source.cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, u) with weight w ,
```
c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}
```


A Greedy Algorithm

- Dijkstra's algorithm is an example of a greedy algorithm:
- At each step, always does what seems best at that step
- A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited
- Turns out to be globally optimal (for this problem)

Where are we?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
- Prove it is correct
- Did this last time, not doing it again
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once
dijkstra(Graph G, Node start) \{
for each node: x.cost=infinity, x.known=false」
start.cost = 0
while (not all nodes are known) \{
$\mathrm{b}=$ find unknown node with smallest cost
b.known $=$ true
for each edge (b, a) in G
if (!a.known)
if (b.cost + weight((b,a)) < a.cost) \{
a.cost $=$ b.cost + weight((b, a))
a.path $=$ b
\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

Improving asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|V|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
- Must maintain a reference from each node to its current position in the priority queue
- Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) \{
for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while (heap is not empty) \{
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
        if(!a.known)
        if (b.cost + weight( (b,a)) < a.cost) \{ \(\mathrm{O}(|\mathrm{E}| \mathrm{log}|\mathrm{V}|)\)
                decreaseKey (a,"new cost - old cost")
        a.path = b
        \}
            \(\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|)\)

\section*{Dense vs. sparse again}
- First approach: \(O\left(|\mathrm{~V}|^{2}\right)\)
- Second approach: \(O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)\)
- So which is better?
- Sparse: \(O(|\mathrm{~V}| \mathrm{log}|\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)\) (if |E| > |V|, then \(\mathrm{O}(|\mathrm{E}| \mathrm{log}|\mathrm{V}|)\) )
- Dense: \(O\left(|\mathrm{~V}|^{2}\right)\)
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

\section*{Done with Dijkstra's}
- You will implement Dijkstra's algorithm in homework 5 ©
- Onward..... Spanning trees!

\section*{Spanning Trees}
- A simple problem: Given a connected undirected graph \(\mathbf{G}=(\mathbf{V}, \mathbf{E})\), find a minimal subset of edges such that \(\mathbf{G}\) is still connected
- A graph \(\mathbf{G 2}=(\mathbf{V}, \mathbf{E} 2)\) such that \(\mathbf{G 2}\) is connected and removing any edge from E2 makes \(\mathbf{G} 2\) disconnected


\section*{Observations}
1. Any solution to this problem is a tree
- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected
2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected
- So |E| \(\geq|\mathrm{V}|-1\)
4. A tree with \(|\mathbf{V}|\) nodes has \(|\mathbf{V}|-1\) edges
- So every solution to the spanning tree problem has |V|-1 edges

\section*{Motivation}

A spanning tree connects all the nodes with as few edges as possible
- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made
- Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost
- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
- Will do that next, after intuition from the simpler case

\section*{Two Approaches}

Different algorithmic approaches to the spanning-tree problem:
1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
2. Iterate through edges; add to output any edge that does not create a cycle

\section*{Spanning tree via DFS}
```

spanning_tree(Graph G) {

```
    for each node i
        i.marked = false
        for some node i: \(f(i)\)
\}
f(Node i) \{
    i.marked = true
    for each j adjacent to i:
        if(!j.marked) \{
        add(i,j) to output
        f(j) // DFS
        \}
\}

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: \(O(|E|)\)

\section*{Example}

Stack
f(1)


Output:

\section*{Example}

Stack
f(1)
f(2)


Output: \((1,2)\)

\section*{Example}


Output: (1,2), (2,3)

\section*{Example}

Stack
f(1)
f(2)
f(3)
f(4)


Output: \((1,2),(2,3),(3,4)\)

\section*{Example}

Stack
f(1)
f(2)
f(3)
f(4)
f(5)


Output: \((1,2),(2,3),(3,4),(4,5)\)

\section*{Example}

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)


Output: \((1,2),(2,3),(3,4),(4,5),(5,6)\)

\section*{Example}

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6), f(7)


Output: \((1,2),(2,3),(3,4),(4,5),(5,6),(5,7)\)

\section*{Example}

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6), f(7)


Output: (1,2), (2,3), (3,4), (4,5), (5,6), (5,7)

\section*{Second Approach}

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
- Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:
- Depends on how quickly you can detect cycles
- Reconsider after the example

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output:

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: \((1,2)\)

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: (1,2), (3,4)

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: \((1,2),(3,4),(5,6)\),

\section*{Example}

Edges in some arbitrary order:


Output: \((1,2),(3,4),(5,6),(5,7)\)

\section*{Example}

Edges in some arbitrary order:


Output: (1,2), (3,4), (5,6), (5,7), (1,5)

\section*{Example}

Edges in some arbitrary order:


Output: (1,2), (3,4), (5,6), (5,7), \((1,5)\)

\section*{Example}

Edges in some arbitrary order:


Output: (1,2), (3,4), (5,6), (5,7), \((1,5)\)

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\) 2


Can stop once we have |V|-1 edges
Output: \((1,2),(3,4),(5,6),(5,7),(1,5),(2,3)\)

\section*{Cycle Detection}
- To decide if an edge could form a cycle is \(O(|\mathrm{~V}|)\) because we may need to traverse all edges already in the output
- So overall algorithm would be \(O(|\mathbf{V}||\mathrm{E}|)\)
- But there is a faster way we know
- Use union-find!
- Initially, each item is in its own 1-element set
- Union sets when we add an edge that connects them
- Stop when we have one set

\section*{Using Disjoint-Set}

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: \(u\) and \(v\) are connected in output-so-far iff \(u\) and \(v\) in the same set
- Initially, each node is in its own set
- When processing edge (u,v):
- If find (u) equals find (v), then do not add the edge
- Else add the edge and union (find (u), find(v))
- \(O(|E|)\) operations that are almost \(O(1)\) amortized

\section*{Summary So Far}

The spanning-tree problem
- Add nodes to partial tree approach is \(O(|E|)\)
- Add acyclic edges approach is almost \(O\) (IEI)
- Using union-find "as a black box"

But really want to solve the minimum-spanning-tree problem
- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be \(O(|E| \log |\mathrm{V}|)\)

\section*{Minimum Spanning Tree Algorithms}

Algorithm \#1
Shortest-path is to Dijkstra's Algorithm
as
Minimum Spanning Tree is to Prim's Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm \#2
Kruskal's Algorithm for Minimum Spanning Tree is
Exactly our \(2^{\text {nd }}\) approach to spanning tree but process edges in cost order```

