
CSE373: Data Structures & Algorithms

Lecture 17: Dijkstra’s Algorithm

Lauren Milne
Summer 2015

Announcements

•  Homework 4 due tonight
•  Homework 5 out today

2

Dijkstra’s Algorithm: Lowest cost paths

3

•  Initially, start node has cost 0 and all other nodes have cost ∞
•  At each step:

–  Pick closest unknown vertex v
–  Add it to the “cloud” of known vertices
–  Update distances for nodes with edges from v

•  That’s it!

A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

1 10 3

11

7

1

2

4

The Algorithm

1.  For each node v, set v.cost = ∞ and v.known = false
2.  Set source.cost = 0
3.  While there are unknown nodes in the graph

a)  Select the unknown node v with lowest cost
b)  Mark v as known
c)  For each edge (v,u) with weight w,

 c1 = v.cost + w // cost of best path through v to u
 c2 = u.cost // cost of best path to u previously known
 if(c1 < c2){ // if the path through v is better

 u.cost = c1
 u.path = v // for computing actual paths

 }

4

A Greedy Algorithm

•  Dijkstra’s algorithm is an example of a greedy algorithm:
–  At each step, always does what seems best at that step

•  A locally optimal step, not necessarily globally optimal
–  Once a vertex is known, it is not revisited

•  Turns out to be globally optimal (for this problem)

5

Where are we?

•  Had a problem: Compute shortest paths in a weighted graph with
no negative weights

•  Learned an algorithm: Dijkstra’s algorithm

•  What should we do after learning an algorithm?
–  Prove it is correct

•  Did this last time, not doing it again
–  Analyze its efficiency

•  Will do better by using a data structure we learned earlier!

6

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

–  Notice each edge is processed only once

7

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

–  Notice each edge is processed only once

8

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)

Improving asymptotic running time

•  So far: O(|V|2)

•  We had a similar “problem” with topological sort being O(|V|2)
due to each iteration looking for the node to process next
–  We solved it with a queue of zero-degree nodes
–  But here we need the lowest-cost node and costs can

change as we process edges

•  Solution?
–  A priority queue holding all unknown nodes, sorted by cost
–  But must support decreaseKey operation

•  Must maintain a reference from each node to its current
position in the priority queue

•  Conceptually simple, but can be a pain to code up

9

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

10

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b

 }
}

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

11

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b

 }
}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|V|log|V|+|E|log|V|)

Dense vs. sparse again

•  First approach: O(|V|2)

•  Second approach: O(|V|log|V|+|E|log|V|)

•  So which is better?
–  Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))
–  Dense: O(|V|2)

•  But, remember these are worst-case and asymptotic
–  Priority queue might have slightly worse constant factors
–  On the other hand, for “normal graphs”, we might call
decreaseKey rarely (or not percolate far), making |E|log|V|
more like |E|

12

Done with Dijkstra’s

•  You will implement Dijkstra’s algorithm in homework 5 J

•  Onward….. Spanning trees!

13

Spanning Trees

•  A simple problem: Given a connected undirected graph G=(V,E),
find a minimal subset of edges such that G is still connected
–  A graph G2=(V,E2) such that G2 is connected and removing

any edge from E2 makes G2 disconnected

14

Observations

1.  Any solution to this problem is a tree
–  Recall a tree does not need a root; just means acyclic
–  For any cycle, could remove an edge and still be connected

2.  Solution not unique unless original graph was already a tree

3.  Problem ill-defined if original graph not connected
–  So |E| ≥ |V|-1

4.  A tree with |V| nodes has |V|-1 edges
–  So every solution to the spanning tree problem has |V|-1

edges

15

Motivation

A spanning tree connects all the nodes with as few edges as possible

•  Example: A “phone tree” so everybody gets the message and no
unnecessary calls get made
–  Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and
we want a tree of least total cost

•  Example: Electrical wiring for a house or clock wires on a chip
•  Example: A road network if you cared about asphalt cost rather

than travel time

This is the minimum spanning tree problem
–  Will do that next, after intuition from the simpler case

16

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1.  Do a graph traversal (e.g., depth-first search, but any traversal

will do), keeping track of edges that form a tree

2.  Iterate through edges; add to output any edge that does not
create a cycle

17

Spanning tree via DFS

18

spanning_tree(Graph G) {
 for each node i
 i.marked = false

 for some node i: f(i)
}
f(Node i) {
 i.marked = true
 for each j adjacent to i:
 if(!j.marked) {

 add(i,j) to output
 f(j) // DFS
 }
}
 Correctness: DFS reaches each node. We add one edge to connect it

 to the already visited nodes. Order affects result, not correctness.

Time: O(|E|)

Example

Stack
f(1)

19

1
2

3

4

5

6

7

Output:

Example

Stack
f(1)
f(2)

20

1
2

3

4

5

6

7

Output: (1,2)

Example

Stack
f(1)
f(2)
f(3)

21

1
2

3

4

5

6

7

Output: (1,2), (2,3)

Example

Stack
f(1)
f(2)
f(3)
f(4)

22

1
2

3

4

5

6

7

Output: (1,2), (2,3), (3,4)

Example

Stack
f(1)
f(2)
f(3)
f(4)
f(5)

23

1
2

3

4

5

6

7

Output: (1,2), (2,3), (3,4), (4,5)

Example

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)

24

1
2

3

4

5

6

7

Output: (1,2), (2,3), (3,4), (4,5), (5,6)

Example

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6), f(7)

25

1
2

3

4

5

6

7

Output: (1,2), (2,3), (3,4), (4,5), (5,6), (5,7)

Example

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6), f(7)

26

1
2

3

4

5

6

7

Output: (1,2), (2,3), (3,4), (4,5), (5,6), (5,7)

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

–  Goal is to build an acyclic connected graph
–  When we add an edge, it adds a vertex to the tree

•  Else it would have created a cycle
–  The graph is connected, so we reach all vertices

Efficiency:
–  Depends on how quickly you can detect cycles
–  Reconsider after the example

27

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

28

1
2

3

4

5

6

7

Output:

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

29

1
2

3

4

5

6

7

Output: (1,2)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

30

1
2

3

4

5

6

7

Output: (1,2), (3,4)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

31

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6),

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

32

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

33

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

34

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

35

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

36

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we
have |V|-1 edges

Cycle Detection

•  To decide if an edge could form a cycle is O(|V|) because we
may need to traverse all edges already in the output

•  So overall algorithm would be O(|V||E|)

•  But there is a faster way we know

•  Use union-find!

–  Initially, each item is in its own 1-element set
–  Union sets when we add an edge that connects them
–  Stop when we have one set

37

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree
algorithm to detect cycles:

Invariant: u and v are connected in output-so-far
 iff

 u and v in the same set

•  Initially, each node is in its own set
•  When processing edge (u,v):

–  If find(u) equals find(v), then do not add the edge
–  Else add the edge and union(find(u),find(v))
–  O(|E|) operations that are almost O(1) amortized

38

Summary So Far

The spanning-tree problem
–  Add nodes to partial tree approach is O(|E|)
–  Add acyclic edges approach is almost O(|E|)

•  Using union-find “as a black box”

But really want to solve the minimum-spanning-tree problem
–  Given a weighted undirected graph, give a spanning tree of

minimum weight
–  Same two approaches will work with minor modifications
–  Both will be O(|E| log |V|)

39

Minimum Spanning Tree Algorithms

Algorithm #1
Shortest-path is to Dijkstra’s Algorithm

as
Minimum Spanning Tree is to Prim’s Algorithm

(Both based on expanding cloud of known vertices, basically using
a priority queue instead of a DFS stack)

Algorithm #2

Kruskal’s Algorithm for Minimum Spanning Tree
is

Exactly our 2nd approach to spanning tree
but process edges in cost order

40

