
CSE 373: Data Structures & Algorithms

Lecture 15: Topological Sort / Graph Traversals

Lauren Milne
Summer 2015

Announcements

•  Catie will be teaching on Friday and possibly Monday
•  Homework 4 due on Monday

2

Graphs

•  A graph G = (V,E)
–  represents relationships among items
–  can be directed or undirected

•  For any graph, complexity is O(|E|+|V|) is O(|V|2)
–  undirected graph, 0 ≤ |E| < |V|2

–  directed graph, 0 ≤ |E| ≤ |V|2

–  Can be sparse
•  |E| is O(|V|)

–  Can be dense
•  |E| is Θ(|V|2)

3

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

What is the Data Structure?

•  The “best one” can depend on:

–  Properties of the graph (e.g., dense versus sparse)
–  The common queries (e.g., “is (u,v) an edge?” versus

“what are the neighbors of node u?”)

•  Two standard graph representations
–  Adjacency Matrix and Adjacency List
–  Different trade-offs, particularly time versus space

4

Adjacency Matrix

•  Assign each node a number from 0 to |V|-1
•  A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

–  If M is the matrix, then M[u][v] being true
means there is an edge from u to v

5

A(0)

B(1)

C(2)

D(3)

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

•  Running time to:
–  Get a vertex’s out-edges:
–  Get a vertex’s in-edges:
–  Decide if some edge exists:
–  Insert an edge:
–  Delete an edge:

•  Space requirements:
–  |V|2 bits

•  Best for sparse or dense graphs?
–  Best for dense graphs

6

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

O(|V|)
O(|V|)
O(1)

O(1)
O(1)

A(0)

B(1)

C(2)

D(3)

Adjacency Matrix Properties

•  How will the adjacency matrix vary for an undirected graph?
–  Undirected will be symmetric around the diagonal

•  How can we adapt the representation for weighted graphs?
–  Instead of a Boolean, store a number in each cell
–  Need some value to represent ‘not an edge’

•  In some situations, 0 or -1 works

7

Adjacency List

•  Assign each node a number from 0 to |V|-1
•  An array of length |V| in which each entry stores a list of all

adjacent vertices (e.g., linked list)

8

0

1

2

3

1 /

0 /

3 1 /

/

A(0)

B(1)

C(2)

D(3)

Adjacency List Properties

•  Running time to:
–  Get all of a vertex’s out-edges:

 O(d) where d is out-degree of vertex
–  Get all of a vertex’s in-edges:

 O(|E|) (but could keep a second adjacency list!)
–  Decide if some edge exists:

 O(d) where d is out-degree of source
–  Insert an edge:
 O(1) (unless you need to check if it’s there)
–  Delete an edge:
 O(d) where d is out-degree of source

•  Space requirements:
–  O(|V|+|E|)

 9

0

1

2

3

1 /

0 /

3 1 /

/

Good for sparse graphs

A(0)

B(1)

C(2)

D(3)

Algorithms

Okay, we can represent graphs

Now we’ll implement some useful and non-trivial algorithms

•  Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

•  Shortest paths: Find the shortest or lowest-cost path from x to y
–  Related: Determine if there even is such a path

10

Topological Sort

Problem: Given a DAG, output all vertices in an order so that no
vertex appears before another vertex that points to it

One example output:
 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

11

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Questions and comments

•  Why do we perform topological sorts only on DAGs?
–  Because a cycle means there is no correct answer

•  Is there always a unique answer?
–  No, there can be 1 or more answers; depends on the graph

•  Do some DAGs have exactly 1 answer?
–  Yes, including all lists

•  Terminology: A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

12

0

1
3

2

4

Uses

•  Figuring out how to graduate

•  Computing an order in which to recompute cells in a spreadsheet

•  Determining an order to compile files using a Makefile

•  In general, taking a dependency graph and finding an order of
execution

13

A First Algorithm for Topological Sort

1.  Label (“mark”) each vertex with its in-degree
–  Could “write in a field in the vertex”
–  Could also do this via a data structure (e.g., array) on the side

2.  While there are vertices not yet output:
a)  Choose a vertex v with in-degree of 0
b)  Output v and conceptually remove it from the graph
c)  For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u

14

Example Output:

15

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 0 2 1 1 1 1 1 1 3

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126

16

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142

17

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143

18

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374

19

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373

20

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417

21

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410

22

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413

23

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413
 XYZ

24

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
 126
 142
 143
 374
 373
 417
 410
 413
 XYZ
 415

25

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Notice

•  Needed a vertex with in-degree 0 to start
–  Will always have at least 1 because no cycles

•  Ties among vertices with in-degrees of 0 can be broken
arbitrarily
–  Can be more than one correct answer, by definition,

depending on the graph

26

Running time?

•  What is the worst-case running time?
–  Initialization O(|V|+|E|) (assuming adjacency list)
–  Sum of all find-new-vertex O(|V|2) (because each O(|V|))
–  Sum of all decrements O(|E|) (assuming adjacency list)
–  So total is O(|V|2) – not good for a sparse graph!

27

 labelEachVertexWithItsInDegree();
 for(ctr=0; ctr < numVertices; ctr++){

 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v

 w.indegree--;
 }

Doing better

The trick is to avoid searching for a zero-degree node every time!
–  Keep the “pending” zero-degree nodes in a list, stack,

queue, bag, table, or something
–  Order we process them affects output but not correctness or

efficiency provided add/remove are both O(1)

Using a queue:

1.  Label each vertex with its in-degree, enqueue 0-degree nodes
2.  While queue is not empty

a)  v = dequeue()
b)  Output v and remove it from the graph
c)  For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u, if new degree is 0, enqueue it

28

Running time?

29

•  What is the worst-case running time?
–  Initialization: O(|V|+|E|) (assuming adjacency list)
–  Sum of all enqueues and dequeues: O(|V|)
–  Sum of all decrements: O(|E|) (assuming adjacency list)
–  Total: O(|E| + |V|) – much better for sparse graph!

 labelAllAndEnqueueZeros();
 for(ctr=0; ctr < numVertices; ctr++){

 v = dequeue();
 put v next in output
 for each w adjacent to v {

 w.indegree--;
 if(w.indegree==0)
 enqueue(v);
 }
 }

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all
nodes reachable from v (i.e., there exists a path from v)
–  Possibly “do something” for each node
–  Examples: print to output, set a field, etc.

Can we use this to answer:
–  Is an undirected graph connected?
–  Is a directed graph strongly connected?

Basic idea:
–  Keep following nodes
–  But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

30

Abstract Idea

31

 traverseGraph(Node start) {
 Set pending = emptySet()
 pending.add(start)

 mark start as visited
 while(pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
 }

Running Time and Options

•  Assuming add and remove are O(1), entire traversal is O(|E|)
–  Use an adjacency list representation

•  The order we traverse depends entirely on add and remove
–  stack “depth-first search” “DFS”
–  queue “breadth-first search” “BFS”

•  DFS and BFS
–  Depth: recursively explore one part before going back to the

other parts not yet explored
–  Breadth: explore areas closer to the start node first

32

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

33

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

• 

A

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

34

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

• 

B A

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

35

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

•  B D A

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

36

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

• 

B D E A

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

37

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

• 

B D E C A

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

38

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

• 

B D E C F A

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

39

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

• 

B D E C F G A

Example: Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

40

A

B

D E

C

F

H G

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

• 
•  Exactly what we called a “pre-order traversal” for trees

B D E C F G H A

Example: Another Depth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

Spring 2015 41 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

DFS2(Node start) {
 initialize stack s and push start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

• 
•  A different but perfectly fine traversal

C F H G B E D A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

42

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 

A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

43

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 

B A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

44

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 

B C A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

45

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 

B C D A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

46

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 

B C D E A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

47

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 

B C D E F A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

48

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 

B C D E F G A

Example: Breadth First Search
•  A tree is a graph and DFS and BFS are particularly easy to “see”

49

A

B

D E

C

F

H G

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• 
•  A “level-order” traversal

B C D E F G H A

Comparison

•  Breadth-first finds shortest paths
–  Better for “what is the shortest path from x to y”

•  But depth-first can use less space in finding a path

•  A third approach:
–  Iterative deepening (IDFS):

•  Try DFS but disallow recursion more than K levels deep
•  If that fails, increment K and start the entire search over

–  Like BFS, finds shortest paths. Like DFS, less space.

50

Saving the Path

•  Our graph traversals can answer the reachability question:
–  “Is there a path from node x to node y?”

•  But what if we want to actually output the path?

•  How to do it:
–  Instead of just “marking” a node, store the previous node

along the path
–  When you reach the goal, follow path fields back to where

you started (and then reverse the answer)
–  If just wanted path length, could put the integer distance at

each node instead

51

Shortest Path using BFS

52

Seattle

San Francisco
Dallas

Salt Lake City

What is shortest path from Seattle to Tyler?
–  Remember marked nodes are not re-enqueued
–  May not be unique

Chicago

Tyler

1

1

1

2
3

0

Single source shortest paths

•  Found the minimum path length from v to u in O(|E|+|V|) using BFS

•  Actually, can find the minimum path length from v to every node
–  Still O(|E|+|V|)

•  Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

•  As before, asymptotically no harder than for one destination

53

Applications

•  Driving directions

•  Cheap flight itineraries

•  Network routing

54

Can we use BFS?

Why BFS won’t work: Lowest cost path may not have the fewest
edges

55

500

100
100 100

100

We will assume there are no negative weights
•  Problem is ill-defined if there are negative-cost cycles
•  Our algorithm is wrong if edges can be negative

–  There are other, slower (but not terrible) algorithms

7

10 5

-11

Dijkstra’s Algorithm

•  The idea: reminiscent of BFS, but adapted to handle weights
–  Grow the set of nodes whose shortest distance has been

computed
–  Nodes not in the set will have a “best distance so far”
–  Will use a priority queue

•  An example of a greedy algorithm
–  A series of steps
–  At each one the locally optimal choice is made

56

