CSE 373: Data Structures & Algorithms
Lecture 15: Topological Sort / Graph Traversals

Lauren Milne
Summer 2015

Announcements

« Catie will be teaching on Friday and possibly Monday
« Homework 4 due on Monday

Graphs

AgraphG = (V,E)
— represents relationships among items
— can be directed or undirected

For any graph, complexity is O(|E[+|V]) is O(|V[?) Han Luke
— undirected graph, 0 < |E| <|V/|?
— directed graph, 0 < |E| £ |V]? Leia
— Can be sparse _
, V = {Han,Leia, Luke}
* [Elis O(V]) E = {(Luke,Leia),

— Can be dense (Han,Leia),
« |E| is O(|V|?) (Leia,Han) }

What is the Data Structure?

 The “best one” can depend on:
— Properties of the graph (e.g., dense versus sparse)

— The common queries (e.g., “is (u,v) an edge?” versus
“what are the neighbors of node u?”)

« Two standard graph representations
— Adjacency Matrix and Adjacency List
— Different trade-offs, particularly time versus space

Adjacency Matrix

« Assign each node a number from 0 to |V| -1

« A |V]| X |V]| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

— If M is the matrix, then M[u] [v] being true
means there is an edge fromu to v

0 1 2 3

D(3) 0| F T | F

A0) C» 1|71 | F|F
B(1) o) F T F T

3 F F F

Adjacency Matrix Properties

* Running time to: 0

— Getavertex'sout-edges: O(|V|) 1| T E | F E
— Get a vertex’s in-edges: O(|V|)

— Decide if some edge exists: O(1) 2 | F T F T

— Insert an edge: O(1)

— Delete an edge: O(1)

» Space requirements:

D@3
— V|2 bits)

A0
» Best for sparse or dense graphs? ©) C(2)

— Best for dense graphs
B(1)

Adjacency Matrix Properties

« How will the adjacency matrix vary for an undirected graph?
— Undirected will be symmetric around the diagonal

« How can we adapt the representation for weighted graphs?
— Instead of a Boolean, store a number in each cell
— Need some value to represent ‘not an edge’
* |n some situations, 0 or -1 works

Adjacency List

« Assign each node a number from 0 to |V| -1

* An array of length | V| in which each entry stores a list of all
adjacent vertices (e.g., linked list)

D(3)) ny
A0) CQ) 1 ToT7
B(1) 2 53] —
3 /

Adjacency List Properties

* Running time to:

» Space requirements:

0 1|/

1

A 4
<
~~

A 4
W
A 4
[—
~~

Get all of a vertex’s out-edges: 2

O(d) where d is out-degree of vertex
Get all of a vertex’s in-edges:

O(|E|) (but could keep a second adjacency list!)

Decide if some edge exists:

O(d) where d is out-degree of source

Insert an edge:

O(1) (unless you need to check if it’s there) C>D(3)

Delete an edge: A(0)

O(d) where d is out-degree of source C?2)

/

B(1)
O(|VI+|E)) Good for sparse graphs

Algorithms

Okay, we can represent graphs
Now we’ll implement some useful and non-trivial algorithms

« Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

« Shortest paths: Find the shortest or lowest-cost path from x to y
— Related: Determine if there even is such a path

10

Topological Sort

Problem: Given a DAG, output all vertices in an order so that no
vertex appears before another vertex that points to it

CSE 374 XYZ

i gy

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

11

Questions and comments

Why do we perform topological sorts only on DAGs?
— Because a cycle means there is no correct answer

* |s there always a unique answer?
— No, there can be 1 or more answers; depends on the graph

Do some DAGs have exactly 1 answer?
— Yes, including all lists

 Terminology: A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

12

Uses

Figuring out how to graduate

« Computing an order in which to recompute cells in a spreadsheet
» Determining an order to compile files using a Makefile

* In general, taking a dependency graph and finding an order of
execution

13

A First Algorithm for Topological Sort

1. Label ("mark”) each vertex with its in-degree

Could “write in a field in the vertex”
Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

a)
b)
C)

Choose a vertex v with in-degree of O
Output v and conceptually remove it from the graph

For each vertex u adjacent to v (i.e. u such that (v,u) in E),
decrement the in-degree of u

14

Examp/e Output:

CSE 374 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: O 0 2 1 1 1 1 1 1 3

15

Examp/e Output:
126

CSE 374 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: O 0 2 1 1 1 1 1 1 3

16

Examp/e Output:

126
CSE 374 XYZ

Cse 10 .

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X
In-degree: O 0 2 1 1 1 1 1 1 3
1
0

17

Examp/e Output:

126
CSE 374 XYZ

142
CsE 410 143

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X
In-degree: O 0 1 1 1 1 1 1 3

2
1 0 0
0

18

Examp/e Output:
CSE 374 XYZ 120

Gz a1 s

SIS TR

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X X

In-degree: O 0 2 1 1 1 1 1 1 3
1 0 0 2
0

19

Examp/e Output:
CSE 374 XYZ 120

Gz a1 s

SIS TR

373

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x X X X X

In-degree: O 0 2 1 1 1 1 1 1 3
1 0 0 O O 0 0 2
0

20

Examp/e Output:
CSE 374 XYZ 120

Gz a1 s

SIS TR

373

ar i oo

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x X X X X X
In-degree: O 0 2 1 1 1 1 1 1 3
1 0 0 O O 0 0 2
0

21

Examp/e Output:
CSE 374 XYZ 120

Gz a1 s

SIS TR

373

G i cov
410

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x X X X X X X
In-degree: O 0 2 1 1 1 1 1 1 3
1 0 0 O O 0 0 2
0

22

Examp/e Output:

126
) XYZ
CSE 37 149
@ @ @ @ 374

373

T v
410
v

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? X X X X X X X X
In-degree: O o 2 1 1 1 1 1 1 3
1 0 0 O 0 0O O 2
0 1
0

23

Examp/e Output:
CSE 374 XYZ 126

Ce 418 1

SIS TR

373
T con i
410
Cov
XYZ
Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X X X X X X X

1 1 1 1 1 1

In-degree: O 0 2 3
1 0 0 O 0 0 0 2
0 1

0

24

Examp/e Output:
CSE 374 XYZ 126

Ce 418 1

SIS TR

373

G i con
410

Gonap

XYZ
415

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X X X X X X X X

In-degree: O 0 2 1 1 1 1 1 1 3
1 0 0 O 0 0 0 2
0 1

0

25

Notice

Needed a vertex with in-degree 0 to start
— Will always have at least 1 because no cycles

Ties among vertices with in-degrees of 0O can be broken
arbitrarily

— Can be more than one correct answer, by definition,
depending on the graph

26

Running time?

labelEachVertexWithItsInDegree () ;
for (ctr=0; ctr < numVertices; ctr++) {
v = findNewVertexOfDegreeZero() ;
put v next in output
for each w adjacent to v
w.indegree--;

 What is the worst-case running time?

— Initialization O(|V|+|E|) (assuming adjacency list)

— Sum of all find-new-vertex O(|V|?) (because each O(|V]))
— Sum of all decrements O(|E|) (assuming adjacency list)
— So total is O(|V|?) — not good for a sparse graph!

27

Doing better

The trick is to avoid searching for a zero-degree node every time!

— Keep the “pending” zero-degree nodes in a list, stack,
queue, bag, table, or something

— Order we process them affects output but not correctness or
efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v =dequeue()

b) Output v and remove it from the graph

c) Foreach vertex u adjacent to v (i.e. u such that (v,u) in E),
decrement the in-degree of u, if new degree is 0, enqueue it

28

Running time?

labelAllAndEnqueueZeros () ;
for (ctr=0; ctr < numVertices; ctr++) {

v = dequeue() ;
put v next in output
for each w adjacent to v {
w.indegree--;
if (w.indegree==0)
enqueue (V) ;

 What is the worst-case running time?
— Initialization: O(|V|+|E|) (assuming adjacency list)
— Sum of all enqueues and dequeues: O(|V])
— Sum of all decrements: O(|E|) (assuming adjacency list)
— Total: O(|E| + [V|) — much better for sparse graph!

29

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all
nodes reachable from v (i.e., there exists a path from v)

— Possibly “do something” for each node
— Examples: print to output, set a field, etc.

Can we use this to answer:
— |Is an undirected graph connected?
— |Is a directed graph strongly connected?

Basic idea:
— Keep following nodes

— But “mark” nodes after visiting them, so the traversal terminates
and processes each reachable node exactly once

30

Abstract Idea

traverseGraph (Node start) {
Set pending = emptySet()
pending.add(start)
mark start as wvisited
while (pending is not empty) {
next = pending.remove ()
for each node u adjacent to next
if(u is not marked) {
mark u
pending.add (u)

31

Running Time and Options

Assuming add and remove are O(1), entire traversal is O(|E|)
— Use an adjacency list representation

The order we traverse depends entirely on add and remove
— stack “depth-first search” “DFS”

L N1}

— queue “breadth-first search” “BFS”

DFS and BFS

— Depth: recursively explore one part before going back to the
other parts not yet explored

— Breadth: explore areas closer to the start node first

32

Example: Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

33

Example: Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

34

Example: Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

35

Example: Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

36

Example: Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

37

Example: Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

- ABDECF

38

Example: Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

- ABDECEFG

39

Example: Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

- ABDECFGH
« Exactly what we called a “pre-order traversal” for trees

40

Example: Another Depth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
DFS2 (Node start) {
initialize stack s and push start
mark start as visited
while (s is not empty) ({
next = s.pop() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and push onto s

}

- ACFHGBED
« A different but perfectly fine traversal

Spring 2015 CSE373: Data Structures & Algorithms 41

Example: Breadth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
BFS (Node start) {
initialize queue g and enqueue start
mark start as visited
while (g is not empty) ({
next = g.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto g

42

Example: Breadth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
BFS (Node start) {
initialize queue g and enqueue start
mark start as visited
while (g is not empty) ({
next = g.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto g

43

Example: Breadth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
BFS (Node start) {
initialize queue g and enqueue start
mark start as visited
while (g is not empty) ({
next = g.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto g

44

Example: Breadth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
BFS (Node start) {

initialize
mark start
while (g is

for each
if(u is

next = q.

queue q and enqueue start
as visited

not empty) {

dequeue () // and “process”
node u adjacent to next
not marked)

mark u and enqueue onto g

- ABCD

45

Example: Breadth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
BFS (Node start) {

initialize
mark start
while (g is

for each
if(u is

next = q.

queue q and enqueue start
as visited

not empty) {

dequeue () // and “process”
node u adjacent to next
not marked)

mark u and enqueue onto g

- ABCDE

46

Example: Breadth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
BFS (Node start) {
initialize queue g and enqueue start
mark start as visited
while (g is not empty) ({
next = g.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto g

- ABCDEF

47

Example: Breadth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
BFS (Node start) {
initialize queue g and enqueue start
mark start as visited
while (g is not empty) ({
next = g.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto g

- ABCDEFG

48

Example: Breadth First Search

 Atreeis agraph and DFS and BFS are particularly easy to “see”
BFS (Node start) {
initialize queue g and enqueue start
mark start as visited
while (g is not empty) ({
next = g.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto g

}

« ABCDEFGH
A “level-order” traversal

49

Comparison

Breadth-first finds shortest paths
— Better for “what is the shortest path from x to y”

But depth-first can use less space in finding a path

A third approach:
— lterative deepening (IDFS):.
* Try DFS but disallow recursion more than K levels deep
« If that fails, increment K and start the entire search over
— Like BFS, finds shortest paths. Like DFS, less space.

50

Saving the Path

Our graph traversals can answer the reachability question:
— “Is there a path from node x to node y?”

But what if we want to actually output the path?

How to do it:
— Instead of just “marking” a node, store the previous node
along the path
— When you reach the goal, follow path fields back to where
you started (and then reverse the answer)
— If just wanted path /ength, could put the integer distance at
each node instead

51

Shortest Path using BFS

What is shortest path from Seattle to Tyler?
— Remember marked nodes are not re-enqueued
— May not be unique

0 1

Chicago
Seattle

‘ Salt Lake City

San Francisco

2

Dallas

52

Single source shortest paths

* Found the minimum path length from v to u in O(|E|+|V|) using BFS
« Actually, can find the minimum path length from v to every node

— Still O(|E[+|V])
 Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

» As before, asymptotically no harder than for one destination

53

Applications

* Driving directions
« Cheap flight itineraries

* Network routing

54

Can we use BFS?

10 5
100 ~100
100 100 O 1 |7

500

Why BFS won’t work: Lowest cost path may not have the fewest
edges

We will assume there are no negative weights
- Problem is ill-defined if there are negative-cost cycles
* Our algorithm is wrong if edges can be negative
— There are other, slower (but not terrible) algorithms

55

Dijkstra’s Algorithm

 The idea: reminiscent of BFS, but adapted to handle weights

— Grow the set of nodes whose shortest distance has been
computed

— Nodes not in the set will have a “best distance so far”
— Will use a priority queue
* An example of a greedy algorithm
— A series of steps
— At each one the locally optimal choice is made

56

