Announcements

- Catie will be teaching on Friday and possibly Monday
- Homework 4 due on Monday
Graphs

- A graph $G = (V, E)$
 - represents relationships among items
 - can be directed or undirected
- For any graph, complexity is $O(|E| + |V|)$ is $O(|V|^2)$
 - undirected graph, $0 \leq |E| < |V|^2$
 - directed graph, $0 \leq |E| \leq |V|^2$
 - Can be sparse
 - $|E|$ is $O(|V|)$
 - Can be dense
 - $|E|$ is $\Theta(|V|^2)$

$V = \{\text{Han, Leia, Luke}\}$
$E = \{(\text{Luke, Leia}),\ (\text{Han, Leia}),\ (\text{Leia, Han})\}$
What is the Data Structure?

• The “best one” can depend on:
 – Properties of the graph (e.g., dense versus sparse)
 – The common queries (e.g., “is \((u,v)\) an edge?” versus “what are the neighbors of node \(u\)?”)

• Two standard graph representations
 – Adjacency Matrix and Adjacency List
 – Different trade-offs, particularly time versus space
Adjacency Matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ being true means there is an edge from u to v
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for sparse or dense graphs?
 - Best for dense graphs
Adjacency Matrix Properties

- How will the adjacency matrix vary for an *undirected graph*?
 - Undirected will be symmetric around the diagonal

- How can we adapt the representation for *weighted graphs*?
 - Instead of a Boolean, store a number in each cell
 - Need some value to represent ‘not an edge’
 - In some situations, 0 or -1 works
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$ (unless you need to check if it’s there)
 - Delete an edge: $O(d)$ where d is out-degree of source

- Space requirements:
 - $O(|V|+|E|)$ Good for sparse graphs
Algorithms

Okay, we can represent graphs

Now we’ll implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

- **Shortest paths**: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path
Topological Sort

Problem: Given a DAG, output all vertices in an order so that no vertex appears before another vertex that points to it

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer

- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph

- Do some DAGs have exactly 1 answer?
 - Yes, including all lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Uses

• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of execution
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 – Could "write in a field in the vertex"
 – Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \(u \) such that \((v,u)\) in \(E \)),
 decrement the in-degree of \(u \)
Example

Output:

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 1 1 3
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output: 126
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output:
126
142
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0
 0

Output:
126
142
143
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3
 1 0 0
 0

Output:
126
142
143
374
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?: x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 1 1 3

Output: 126 142 143 374 373
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3
 0 0 0 0 0 0 0 0 0 0 2
 0

Output: 126 142 143 374 373 417 XYZ
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 0 2
 0 1

Output: 126 142 143 374 373 410 415 417 XYZ
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 0 2
 0 0 1 0
 0 0 0 0 0 0 0 0 0 0 2
 1 0 0 0 0 0 0 0 0 0 2
 0 0 1 0
 0 0 0 0 0 0 0 0 0 0 2
 1 0 0 0 0 0 0 0 0 0 2
 0 0 1 0
 0 0 0 0 0 0 0 0 0 0 2
 1 0 0 0 0 0 0 0 0 0 2
 0 0 1 0
 0 0 0 0 0 0 0 0 0 0 2
 1 0 0 0 0 0 0 0 0 0 2
 0 0 1 0
 0 0 0 0 0 0 0 0 0 0 2
 1 0 0 0 0 0 0 0 0 0 2
 0 0 1 0

Output: 126 142 143 374 373 410 413 415 417 XYZ
Example

Output:
126
142
143
374
373
410
413
415
417
XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 0 2
 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 0 0 0 0
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output:
126
142
143
374
373
410
413
415
XYZ
415
Notice

• Needed a vertex with in-degree 0 to start
 – Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken arbitrarily
 – Can be more than one correct answer, by definition, depending on the graph
Running time?

What is the worst-case running time?

- Initialization $O(|V|+|E|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O(|V|^2)$ – not good for a sparse graph!

```java
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
  v = findNewVertexOfDegreeZero();
  put v next in output
  for each w adjacent to v
    w.indegree--;
}
```
Doing better

The trick is to avoid searching for a zero-degree node every time!

– Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something

– Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{enqueue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u, if new degree is 0, enqueue it
Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(v);
    }
}
```

- What is the worst-case running time?
 - Initialization: $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - Total: $O(|E| + |V|)$ – much better for sparse graph!
Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v \), find all nodes \(\textit{reachable} \) from \(v \) (i.e., there exists a path from \(v \))
- Possibly “do something” for each node
- Examples: print to output, set a field, etc.

Can we use this to answer:
- Is an undirected graph connected?
- Is a directed graph strongly connected?

Basic idea:
- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Abstract Idea

traverseGraph(Node start) {
 Set pending = emptySet()
 pending.add(start)
 mark start as visited
 while (pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if (u is not marked) {
 mark u
 pending.add(u)
 }
 }
}
Running Time and Options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
 - Use an adjacency list representation

- The order we traverse depends entirely on add and remove
 - stack “depth-first search” “DFS”
 - queue “breadth-first search” “BFS”

- DFS and BFS
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: explore areas closer to the start node first
Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A
Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```
Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A B D
Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A B D E
Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A B D E C
Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

- A B D E C F
Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

DFS(Node start) {
 mark and process start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

- A B D E C F G
Example: Depth First Search

• A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

• A B D E C F G H

• Exactly what we called a “pre-order traversal” for trees
Example: Another Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
DFS2(Node start) {
    initialize stack s and push start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

- A different but perfectly fine traversal

A C F H G B E D
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
BFS(Node start) {
    initialize queue q and enqueue start
    mark start as visited
    while (q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if (u is not marked)
                mark u and enqueue onto q
    }
}
```
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
BFS(Node start) {
    initialize queue q and enqueue start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

- A B
Example: Breadth First Search

• A tree is a graph and DFS and BFS are particularly easy to “see”

```java
BFS(Node start) {
    initialize queue q and enqueue start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

• A B C
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
BFS(Node start) {
    initialize queue q and enqueue start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

- A B C D
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
BFS(Node start) {
    initialize queue q and enqueue start
    mark start as visited
    while (q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if (u is not marked)
                mark u and enqueue onto q
    }
}
```

- A B C D E
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
BFS(Node start) {
  initialize queue q and enqueue start
  mark start as visited
  while(q is not empty) {
    next = q.dequeue() // and “process”
    for each node u adjacent to next
      if(u is not marked)
        mark u and enqueue onto q
  }
}
```

- A B C D E F
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

- A B C D E F G
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

- A B C D E F G H
- A “level-order” traversal
Comparison

- Breadth-first finds shortest paths
 - Better for “what is the shortest path from \(x \) to \(y \)”

- But depth-first can use less space in finding a path

- A third approach:
 - *Iterative deepening (IDFS):*
 - Try DFS but disallow recursion more than \(k \) levels deep
 - If that fails, increment \(k \) and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.
Saving the Path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node x to node y?”

• But what if we want to actually output the path?

• How to do it:
 – Instead of just “marking” a node, store the previous node along the path
 – When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Shortest Path using BFS

What is shortest path from Seattle to Tyler?
- Remember marked nodes are not re-enqueued
- May not be unique
Single source shortest paths

- Found the minimum path length from v to u in $O(|E|+|V|)$ using BFS.
- Actually, can find the minimum path length from v to every node.
 - Still $O(|E|+|V|)$
- Now: Weighted graphs

 Given a weighted graph and node v,
 find the minimum-cost path from v to every node.
- As before, asymptotically no harder than for one destination.
Applications

- Driving directions
- Cheap flight itineraries
- Network routing
Can we use BFS?

Why BFS won’t work: Lowest cost path may not have the fewest edges

We will assume there are no negative weights

- **Problem** is *ill-defined* if there are negative-cost *cycles*
- **Our algorithm** is *wrong* if *edges* can be negative
 - There are other, slower (but not terrible) algorithms
Dijkstra’s Algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a “best distance so far”
 - Will use a priority queue
- An example of a greedy algorithm
 - A series of steps
 - At each one the locally optimal choice is made