
CSE373: Data Structures & Algorithms

Lecture 14: Introduction to Graphs

Lauren Milne
Summer 2015

Announcements

•  Homework 4
–  Implementing hash tables and hash functions
–  Due Monday, August 3rd at 11pm
–  Allowed to work with a partner

•  Catie Baker covering Friday class

2

Homework 4

•  Read through the provided code files
•  Implement DataCount[] getCountsArray(DataCounter counter) method of

WordCount
–  use iterator of counter to get elements and put in a new array (which is

returned
•  Implement compare(string, string) method of StringComparator

–  return 0 if the same, negative number if first argument comes alphabetically
first

•  Implement two implementations of DataCounter
–  HashTable_SC: hash table using separate chaining
–  HashTable_OA: hash table using open addressing
–  StringHasher: hash function for string

•  Fill in code in Correlator.java to compare documents
•  Test your solutions and turn in testing code
•  README

–  do some timing, write another hash function

 3

Graphs

•  A graph is a formalism for representing relationships among items
–  Very general definition because very general concept

•  A graph is a pair
 G = (V,E)

–  A set of vertices, also known as nodes
 V = {v1,v2,…,vn}

–  A set of edges
 E = {e1,e2,…,em}

•  Each edge ei is a pair of vertices
 (vj,vk)

•  An edge “connects” the vertices

•  Graphs can be directed or undirected

4

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

Undirected Graphs

•  In undirected graphs, edges have no specific direction
–  Edges are always “two-way”

5

•  Thus, (u,v) ∈ E implies (v,u) ∈ E
–  Only one of these edges needs to be in the set
–  The other is implicit, so normalize how you check for it

•  Degree of a vertex: number of edges containing that vertex
–  Put another way: the number of adjacent vertices

A

B

C

D

Directed Graphs

•  In directed graphs (sometimes called digraphs), edges have a
direction

6

•  Thus, (u,v) ∈ E does not imply (v,u) ∈ E.
•  Let (u,v) ∈ E mean u → v
•  Call u the source and v the destination

•  In-degree of a vertex: number of in-bound edges,
i.e., edges where the vertex is the destination

•  Out-degree of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

or

2 edges here

A

B

C

D A

B

C

Self-Edges, Connectedness

•  A self-edge a.k.a. a loop is an edge of the form (u,u)
–  Depending on the use/algorithm, a graph may have:

•  No self edges
•  Some self edges
•  All self edges (often therefore implicit, but we will be explicit)

•  A node can have a degree / in-degree / out-degree of zero

•  A graph does not have to be connected
–  Even if every node has non-zero degree

7

More notation

For a graph G = (V,E):

•  |V| is the number of vertices
•  |E| is the number of edges

–  Minimum?
–  Maximum for undirected?
–  Maximum for directed?

•  If (u,v) ∈ E
–  Then v is a neighbor of u, i.e., v is adjacent to u
–  Order matters for directed edges

• u is not adjacent to v unless (v,u) ∈ E

8

A

B

C

D V = {A, B, C, D}
E = {(C, B),
 (A, B),
 (B, A)
 (C, D)}

0
|V||V+1|/2 ∈ O(|V|2)

 |V|2 ∈ O(|V|2)
(assuming self-edges allowed, else subtract |V|)

Examples

Which would…
Use directed edges? Have self-edges? Be connected? Have 0-

degree nodes?

1.  Web pages with links
2.  Facebook friends
3.  Methods in a program that call each other
4.  Road maps (e.g., Google maps)
5.  Airline routes
6.  Family trees
7.  Course pre-requisites

9

Weighted Graphs
•  In a weighed graph, each edge has a weight a.k.a. cost

–  Typically numeric (most examples use ints)
–  Some graphs allow negative weights; many do not

10

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

•  Web pages with links
•  Facebook friends
•  Methods in a program that call each other
•  Road maps (e.g., Google maps)
•  Airline routes
•  Family trees
•  Course pre-requisites

11

Paths and Cycles

•  A path is a list of vertices [v0,v1,…,vn] such that (vi,vi+1)∈
E for all 0 ≤ i < n. Say “a path from v0 to vn”

•  A cycle is a path that begins and ends at the same node (v0==vn)

12

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost
•  Path length: Number of edges in a path
•  Path cost: Sum of weights of edges in a path

Example where
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

13

Chicago
Seattle

San Francisco Dallas

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) =
 cost(P) =

5
11.5

Simple Paths and Cycles

•  A simple path repeats no vertices, except the first might be the
last
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

•  Recall, a cycle is a path that ends where it begins

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

•  A simple cycle is a cycle and a simple path

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

14

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

15

A

B

C

D

No

No

Undirected-Graph Connectivity

•  An undirected graph is connected if for all
pairs of vertices u,v, there exists a path from u to v

•  An undirected graph is complete, a.k.a. fully connected if for all
pairs of vertices u,v, there exists an edge from u to v

16

Connected graph Disconnected graph

plus self edges

Directed-Graph Connectivity

•  A directed graph is strongly connected if
there is a path from every vertex to every
other vertex

•  A directed graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

•  A complete a.k.a. fully connected directed
graph has an edge from every vertex to
every other vertex

17

plus self edges

Trees as Graphs

When talking about graphs,
we say a tree is a graph that is:

–  Undirected
–  Acyclic
–  Connected

So all trees are graphs, but not
all graphs are trees

18

Rooted Trees
•  We are more accustomed to rooted trees where:

–  We identify a unique root
–  We think of edges as directed: parent to children

•  Given a tree, picking a root gives a unique rooted tree
–  The tree is just drawn differently

19

A

B

D E

C

F

H G

redrawn
A

B

D E

C

F

H G

Rooted Trees
•  We are more accustomed to rooted trees where:

–  We identify a unique root
–  We think of edges as directed: parent to children

•  Given a tree, picking a root gives a unique rooted tree
–  The tree is just drawn differently

20

A

B

D E

C

F

H G

redrawn

F

G H C

A

B

D E

Directed Acyclic Graphs (DAGs)
•  A DAG is a directed graph with no (directed) cycles

–  Every rooted directed tree is a DAG
–  But not every DAG is a rooted directed tree

–  Every DAG is a directed graph
–  But not every directed graph is a DAG

21

Examples

Which of our directed-graph examples do you expect to be a DAG?

•  Web pages with links
•  Methods in a program that call each other
•  Airline routes
•  Family trees
•  Course pre-requisites

22

Density / Sparsity

•  Recall: In an undirected graph, 0 ≤ |E| < |V|2

•  Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

•  So for any graph, O(|E|+|V|) is O(|V|2)

•  Another fact: If an undirected graph is connected, then |V|-1 ≤ |E|

•  Because |E| is often much smaller than its maximum size, we do not
always approximate |E| as O(|V|2)
–  This is a correct bound, it just is often not tight
–  If it is tight, i.e., |E| is Θ(|V|2) we say the graph is dense

•  More sloppily, dense means “lots of edges”
–  If |E| is O(|V|) we say the graph is sparse

•  More sloppily, sparse means “most possible edges missing”

23

What is the Data Structure?

•  So graphs are really useful for lots of data and questions
–  For example, “what’s the lowest-cost path from x to y”

•  But we need a data structure that represents graphs

•  The “best one” can depend on:
–  Properties of the graph (e.g., dense versus sparse)
–  The common queries (e.g., “is (u,v) an edge?” versus

“what are the neighbors of node u?”)

•  So we’ll discuss the two standard graph representations
–  Adjacency Matrix and Adjacency List
–  Different trade-offs, particularly time versus space

24

Adjacency Matrix

•  Assign each node a number from 0 to |V|-1
•  A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

–  If M is the matrix, then M[u][v] being true
means there is an edge from u to v

25

A(0)

B(1)

C(2)

D(3)

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

•  Running time to:
–  Get a vertex’s out-edges:
–  Get a vertex’s in-edges:
–  Decide if some edge exists:
–  Insert an edge:
–  Delete an edge:

•  Space requirements:
–  |V|2 bits

•  Best for sparse or dense graphs?
–  Best for dense graphs

26

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

O(|V|)
O(|V|)
O(1)

O(1)
O(1)

Adjacency Matrix Properties

•  How will the adjacency matrix vary for an undirected graph?
–  Undirected will be symmetric around the diagonal

•  How can we adapt the representation for weighted graphs?
–  Instead of a Boolean, store a number in each cell
–  Need some value to represent ‘not an edge’

•  In some situations, 0 or -1 works

27

Adjacency List

•  Assign each node a number from 0 to |V|-1
•  An array of length |V| in which each entry stores a list of all

adjacent vertices (e.g., linked list)

28

0

1

2

3

1 /

0 /

3 1 /

/

A(0)

B(1)

C(2)

D(3)

Adjacency List Properties

•  Running time to:
–  Get all of a vertex’s out-edges:

 O(d) where d is out-degree of vertex
–  Get all of a vertex’s in-edges:

 O(|V|+|E|) (but could keep a second adjacency list for this!)
–  Decide if some edge exists:

 O(d) where d is out-degree of source
–  Insert an edge:
 O(1) (unless you need to check if it’s there)
–  Delete an edge:
 O(d) where d is out-degree of source

•  Space requirements:
–  O(|V|+|E|)

 29

0

1

2

3

1 /

0 /

3 1 /

/

•  Good for sparse graphs

Next…

Okay, we can represent graphs

Next lecture we’ll implement some useful and non-trivial algorithms

•  Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

•  Shortest paths: Find the shortest or lowest-cost path from x to y
–  Related: Determine if there even is such a path

30

