

CSE373: Data Structures & Algorithms Lecture 14: Introduction to Graphs

Lauren Milne Summer 2015

Announcements

- Homework 4
 - Implementing hash tables and hash functions
 - Due Monday, August 3rd at 11pm
 - Allowed to work with a partner
- Catie Baker covering Friday class

Homework 4

- Read through the provided code files
- Implement DataCount[] getCountsArray(DataCounter counter) method of WordCount
 - use iterator of counter to get elements and put in a new array (which is returned
- Implement compare(string, string) method of StringComparator
 - return 0 if the same, negative number if first argument comes alphabetically first
- Implement two implementations of DataCounter
 - HashTable_SC: hash table using separate chaining
 - HashTable_OA: hash table using open addressing
 - StringHasher: hash function for string
- Fill in code in Correlator.java to compare documents
- Test your solutions and turn in testing code
- README
 - do some timing, write another hash function

Graphs

- A graph is a formalism for representing relationships among items
 Very general definition because very general concept
- A graph is a pair

G = (V, E)

A set of vertices, also known as nodes

$$\mathbf{V} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$

- A set of edges
 - $E = \{e_1, e_2, ..., e_m\}$
 - Each edge e_i is a pair of vertices
 (v_j, v_k)
 - An edge "connects" the vertices
- Graphs can be directed or undirected

Han Luke Leia

V = {<mark>Han</mark>,Leia,Luke}

$$E = \{ (Luke, Leia), \}$$

(Han,Leia),

(Leia, Han) }

Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"

- Thus, $(u,v) \in E$ implies $(v,u) \in E$
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed Graphs

In directed graphs (sometimes called digraphs), edges have a direction

or

- Thus, $(u, v) \in E$ does not imply $(v, u) \in E$.
 - Let $(u, v) \in E$ mean $u \to v$
 - Call **u** the source and **v** the destination
- In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-degree of a vertex: number of out-bound edges i.e., edges where the vertex is the source

Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form (u,u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected
 - Even if every node has non-zero degree

- |**v**| is the number of vertices
- **|E|** is the number of edges
 - Minimum?

- 0
- Maximum for undirected? $|V| |V+1|/2 \in O(|V|^2)$
- Maximum for directed? $|V|^2 \in O(|V|^2)$ (assuming self-edges allowed, else subtract |V|)
- If $(u,v) \in E$
 - Then \mathbf{v} is a neighbor of \mathbf{u} , i.e., \mathbf{v} is adjacent to \mathbf{u}
 - Order matters for directed edges
 - u is not adjacent to v unless (v, u) $\in E$

Examples

Which would...

Use directed edges? Have self-edges? Be connected? Have 0degree nodes?

- 1. Web pages with links
- 2. Facebook friends
- 3. Methods in a program that call each other
- 4. Road maps (e.g., Google maps)
- 5. Airline routes
- 6. Family trees
- 7. Course pre-requisites

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Some graphs allow *negative weights*; many do not

Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

- A path is a list of vertices [v₀, v₁,..., v_n] such that (v_i, v_{i+1})∈
 E for all 0 ≤ i < n. Say "a path from v₀ to v_n"
- A cycle is a path that begins and ends at the same node $(\mathbf{v}_0 = = \mathbf{v}_n)$

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path
- Path cost: Sum of *weights* of edges in a path

Example where P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Simple Paths and Cycles

- A simple path repeats no vertices, except the first might be the last [Seattle, Salt Lake City, San Francisco, Dallas] [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No

Undirected-Graph Connectivity

• An undirected graph is connected if for all pairs of vertices **u**, **v**, there exists a *path* from **u** to **v**

• An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v

plus self edges

Directed-Graph Connectivity

• A directed graph is strongly connected if there is a path from every vertex to every other vertex

• A directed graph is weakly connected if there is a path from every vertex to every other vertex *ignoring direction of edges*

• A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

Trees as Graphs

When talking about graphs, we say a tree is a graph that is:

- Undirected
- Acyclic
- Connected

So all trees are graphs, but not all graphs are trees

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

Density / Sparsity

- Recall: In an undirected graph, $0 \le |E| \le |V|^2$
- Recall: In a directed graph: $0 \le |E| \le |V|^2$
- So for any graph, O(|E|+|V|) is $O(|V|^2)$
- Another fact: If an undirected graph is *connected*, then $|V|-1 \le |E|$
- Because |E| is often much smaller than its maximum size, we do not always approximate |E| as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., |E| is $\Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If |E| is O(|V|) we say the graph is sparse
 - More sloppily, sparse means "most possible edges missing"

What is the Data Structure?

- So graphs are really useful for lots of data and questions
 For example, "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- The "best one" can depend on:
 - Properties of the graph (e.g., dense versus sparse)
 - The common queries (e.g., "is (u,v) an edge?" versus
 "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to |V|-1
- A |**v**| x |**v**| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then M[u][v] being true means there is an edge from u to v

Adjacency Matrix Properties

- Running time to:
 - Get a vertex's out-edges: O(|V|)
 - Get a vertex's in-edges: O(|V|)
 - Decide if some edge exists: O(1)
 - Insert an edge: O(1)
 - Delete an edge: **O(1)**
- Space requirements:

 $- |V|^2$ bits

- Best for sparse or dense graphs?
 - Best for dense graphs

Adjacency Matrix Properties

- How will the adjacency matrix vary for an *undirected graph*?
 Undirected will be symmetric around the diagonal
- How can we adapt the representation for *weighted graphs*?
 - Instead of a Boolean, store a number in each cell
 - Need some value to represent 'not an edge'
 - In *some* situations, 0 or -1 works

Adjacency List

- Assign each node a number from 0 to |V|-1
- An array of length |v| in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- Running time to:
 - Get all of a vertex's out-edges:
 O(d) where d is out-degree of vertex
 - Get all of a vertex's in-edges:
 O(|V|+|E|) (but could keep a second adjacency list for this!)
 - Decide if some edge exists:

O(d) where d is out-degree of source

- Insert an edge:

O(1) (unless you need to check if it's there)

- Delete an edge:

O(d) where d is out-degree of source

- Space requirements:
 - O(|V|+|E|)

- ource
- Good for sparse graphs

0

1

2

Next...

Okay, we can represent graphs

Next lecture we'll implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
 Related: Determine if there even is such a path