

CSE373: Data Structures & Algorithms Lecture 10: Implementing Union-Find

Lauren Milne Summer 2015

Announcements

- Homework 3 due in ONE week...Wednesday July 22nd!
- TA Sessions will remain the same time.
- Midterm on Friday
 - Exam review Thursday 5-6 pm in EEB 125

The plan

Last lecture:

- Disjoint sets
- The union-find ADT for disjoint sets

Today's lecture:

- Finish maze application
- Basic implementation of the union-find ADT with "up trees"
- Optimizations that make the implementation much faster

Example application: maze-building

• Build a random maze by erasing edges

- Possible to get from anywhere to anywhere
 - Including "start" to "finish"
- No loops possible without backtracking
 - After a "bad turn" have to "undo"

The algorithm

P = disjoint sets of connected cells

initially each cell in its own 1-element set

- E = set of edges not yet processed, initially all (internal) edges
- M = set of edges kept in maze (initially empty)

while P has more than one set {

- Pick a random edge (x,y) to remove from E
- u = find(x)
- v = find(y)
- if u==v

add (x,y) to M // same subset, leave edge in maze, do not create cycle else

```
union(u,v) // connect subsets, remove edge from maze
```

}

Add remaining members of E to M, then output M as the maze

Example

Pick edge (8,14) Find(8) = 7 Find(14) = 20 Union(7,20)

Star	t 1	2	3	4	5	6	
	7	8	9	10	11	12	
	13	14	15	16	17	18	
	19	20	21	22	23	24	
	25	26	27	28	29	30	
	31	32	33	34	35	36	End

Ρ $\{1,2,\underline{7},8,9,13,19\}$ {<u>3</u>} **{<u>4</u>}** {<u>5</u>} {<u>6</u>} {<u>10</u>} {11,<u>17</u>} {<u>12</u>} {14,<u>20</u>,26,27} {15,<u>16</u>,21} {<u>18</u>} {<u>25</u>} {<u>28</u>} {<u>31</u>} {22,23,24,29,30,32 33,34,35,36}

Example: Add edge to M step

Pick edge (19,20) Find (19) = 7 Find (20) = 7 Add (19,20) to M

Start 1		2	3	4	5	6	
	7	8	9	10	11	12	
	13	14	15	16	17	18	
	19	20	21	22	23	24	
	25	26	27	28	29	30	
	31	32	33	34	35	36	End

Ρ {1,2,7,8,9,13,19,14,20,26,27} {<u>3</u>} **{<u>4</u>}** {<u>5</u>} {<u>6</u>} {<u>10</u>} {11,<u>17</u>} {<u>12</u>} {15,<u>16</u>,21} {<u>18</u>} {<u>25</u>} {<u>28</u>} {<u>31</u>} {22,23,24,29,30,32 33,<u>34</u>,35,36}

At the end of while loop

- Stop when P has one set (i.e. all cells connected)
- Suppose green edges are already in M and black edges were not yet picked
 - Add all black edges to M

Union-Find ADT

- **create** an initial partition of a set
 - Typically each item in its own subset: {a}, {b}, {c}, ...
 - Name each subset by choosing a *representative element*

• **find** takes an element of S and returns the representative element of the subset it is in

union takes two subsets and (permanently) makes one larger subset

Implementation – our goal

- Start with an initial partition of *n* subsets
 - Often 1-element sets, e.g., $\{1\}$, $\{2\}$, $\{3\}$, ..., $\{n\}$
- May have *m* find operations
- May have up to *n*-1 union
 - After *n*-1 union operations, every find returns same 1 set

Up-tree data structure

- Tree with:
 - No limit on branching factor
 - References from children to parent
- Start with forest of 1-node trees
 - 1 2 3 4 5 6 7
- Possible forest after several unions:
 - Will use roots for set names

Find

find(x):

- Assume we have O(1) access to each node
 - Will use an array where index i holds node i
- Start at x and follow parent pointers to root
- Return the root

Union

union(x,y):

- Assume x and y are roots
 - Else find the roots of their trees
- Change root of one to have parent be the root of the other
 - Notice no limit on branching factor

Simple implementation

 If set elements are contiguous numbers (e.g., 1,2,...,n), use array of length n called up

- Starting at index 1 on slides
- Put in array index of parent, with 0 (or -1, etc.) for a root
- Example: • 4 5 up \mathbf{O} Example: up ()

Implement operations

- Worst-case run-time for union? **(**(1)
- Worst-case run-time for find? **O(n)**
- Worst-case run-time for *m* finds and *n*-1 unions? *O*(m*n)

Two key optimizations

- 1. Improve union so it stays O(1) but makes find $O(\log n)$
 - So *m* finds and *n*-1 unions is $O(m \log n + n)$
 - Union-by-size: connect smaller tree to larger tree
- 2. Improve find so it becomes even faster
 - Make *m* finds and *n*-1 unions *almost* O(m + n)
 - *Path-compression:* connect directly to root during finds

The bad case to avoid

Union-by-size

Union-by-size:

 Always point the *smaller* (total # of nodes) tree to the root of the larger tree

Union-by-size

Union-by-size:

 Always point the *smaller* (total # of nodes) tree to the root of the larger tree

Array implementation

Keep the size (number of nodes in a second array)

- Or have one array of objects with two fields

Nifty trick

Actually we do not need a second array...

- Instead of storing 0 for a root, store negation of size
- So up value < 0 means a root</p>

The Bad case? Now a Great case...

General analysis

- Showing one worst-case example is now good is *not* a proof that the worst-case has improved
- So let's prove:
 - union is still O(1) this is "obvious"
 - find is now O(log n)
- Claim: If we use union-by-size, an up-tree of height *h* has at least 2^h nodes
 - Proof by induction on *h*…

Exponential number of nodes

P(h)= With union-by-size, up-tree of height *h* has at least 2^{*h*} nodes

Proof by induction on *h*...

- Base case: h = 0: The up-tree has 1 node and $2^0 = 1$
- Inductive case: Assume P(h) and show P(h+1)
 - A height h+1 tree T has at least one height h child T1
 - T1 has at least 2^h nodes by induction (assumption)
 - And T has at least as many nodes not in T1 than in T1
 - Else union-by-size would have

had T point to T1, not T1 point to T (!!)

- So total number of nodes is at least $2^{h} + 2^{h} = 2^{h+1}$

The key idea

Intuition behind the proof: No one child can have more than half the nodes

As usual, if number of nodes is exponential in height, then height is logarithmic in number of nodes

So find is $O(\log n)$

The new worst case

n/2 Unions-by-size

The new worst case (continued)

After n/2 + n/4 + ... + 1 Unions-by-size:

What about union-by-height

We could store the height of each root rather than size

- Still guarantees logarithmic worst-case find
 Proof left as an exercise if interested
- But does not work well with our next optimization

Two key optimizations

- 1. Improve union so it stays O(1) but makes find $O(\log n)$
 - So *m* finds and *n*-1 unions is $O(m \log n + n)$
 - Union-by-size: connect smaller tree to larger tree
- 2. Improve **find** so it becomes even faster
 - Make m finds and n-1 unions **almost** O(m + n)
 - *Path-compression:* connect directly to root during finds

Path compression

- Simple idea: As part of a **find**, change each encountered node's parent to point directly to root
 - Faster future finds for everything on the path (and their descendants)

Pseudocode

<pre>// performs path compression</pre>
<pre>int find(i) {</pre>
// find root
int r = i
<pre>while(up[r] > 0)</pre>
r = up[r]
<pre>// compress path</pre>
if i==r
return r;
<pre>int old_parent = up[i]</pre>
<pre>while(old parent != r) {</pre>
up[i] = r
<pre>i = old parent;</pre>
old parent = up[i]
}
return r;

So, how fast is it?

A single worst-case find could be $O(\log n)$

- But only if we did a lot of worst-case unions beforehand
- And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than $O(\log n)$

- We won't prove it see text if curious
- But we will *understand* it:
 - How it is *almost O*(1)
 - Because total for *m* finds and *n*-1 unions is almost O(*m*+*n*)

A really slow-growing function

log* x is the minimum number of times you need to apply "log of log of log of" to go from x to a number <= 1</pre>

For just about every number we care about, log * x is less than or equal to 5 (!) If $x \le 2^{65536}$ then $log * x \le 5$ - log * 2 = 1 $- log * 4 = log * 2^2 = 2$ $- log * 16 = log * 2^{(2^2)} = 3$ (log log log 16 = 1) $- log * 65536 = log * 2^{((2^2)^2)} = 4$ (log log log 65536 = 1) $- log * 2^{65536} = \dots = 5$

Almost linear

- Turns out total time for *m* finds and *n*-1 unions is
 O((*m*+*n*)*(log* (*m*+*n*))
 - Remember, if m+n < 2⁶⁵⁵³⁶ then log* (m+n) < 5
 so effectively we have O(m+n)
- Because log* grows soooo slowly
 - For all practical purposes, amortized bound is constant, i.e., cost of find is constant, total cost for m finds is linear
 - We say "near linear" or "effectively linear"
- Need union-by-size and path-compression for this bound
 - Path-compression changes height but not weight, so they interact well
- As always, asymptotic analysis is separate from "coding it up"