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Announcements 

•  Homework 3 due in ONE week…Wednesday July 22nd! 
 

•  TA Sessions will remain the same time. 

•  Midterm on Friday 
–  Exam review Thursday 5-6 pm in EEB 125 
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The plan 

Last lecture: 
 

•  Disjoint sets 

•  The union-find ADT for disjoint sets 
 
Today’s lecture: 
 

•  Finish maze application 
•  Basic implementation of the union-find ADT with “up trees” 

•  Optimizations that make the implementation much faster 
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Example application: maze-building 

•  Build a random maze by erasing edges 

–  Possible to get from anywhere to anywhere 
•  Including “start” to “finish” 

–  No loops possible without backtracking 
•  After a “bad turn” have to “undo” 
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The algorithm 
•  P = disjoint sets of connected cells  

 initially each cell in its own 1-element set 
•  E = set of edges not yet processed, initially all (internal) edges 
•  M = set of edges kept in maze (initially empty) 
 

while P has more than one set { 
–  Pick a random edge (x,y) to remove from E 
–  u = find(x) 
–  v = find(y) 
–  if u==v 
     add (x,y) to M // same subset, leave edge in maze, do not create cycle 
    else  

 union(u,v) // connect subsets, remove edge from maze 
} 
Add remaining members of E to M, then output M as the maze 
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Example 
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Pick edge (8,14) 
Find(8) = 7  
Find(14) = 20 
Union(7,20) 

P 
{1,2,7,8,9,13,19} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{14,20,26,27} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 



Example 
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P 
{1,2,7,8,9,13,19} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{14,20,26,27} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32,33,34,35,36} 
 

Find(8) = 7 
Find(14) = 20 

Union(7,20) 

P 
{1,2,7,8,9,13,19,14,20,26,27} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32,33,34,35,36} 
 



Example: Add edge to M step 
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P 
{1,2,7,8,9,13,19,14,20,26,27} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

Pick edge (19,20) 
Find (19) = 7  
Find (20) = 7 
Add (19,20) to M 



At the end of while loop 

•  Stop when P has one set (i.e. all cells connected) 
•  Suppose green edges are already in M and black edges were 

not yet picked 
–  Add all black edges to M 
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Start 

End 

1 2 3 4 5 6 
7 8 9 10 11 12 

13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
31 32 33 34 35 36 

P 
{1,2,3,4,5,6,7,… 36} 

Done! J 



Union-Find ADT 

•  create an initial partition of a set 
–  Typically each item in its own subset: {a}, {b}, {c}, … 
–  Name each subset by choosing a representative element 

•  find takes an element of S and returns the representative 
element of the subset it is in 

•  union takes two subsets and (permanently) makes one larger 
subset 
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Implementation – our goal 

•  Start with an initial partition of n subsets 
–  Often 1-element sets, e.g., {1}, {2}, {3}, …, {n} 

•  May have m find operations  

•  May have up to n-1 union  
–  After n-1 union operations, every find returns same 1 set 
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Up-tree data structure 

•  Tree with: 
–  No limit on branching factor  
–  References from children to parent 

•  Start with forest of 1-node trees 

•  Possible forest after several unions: 
–  Will use roots for 
    set names 
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4 5 

6 

7 



Find  

find(x): 
–  Assume we have O(1) access to each node 

•  Will use an array where index i holds node i 
–  Start at x and follow parent pointers to root 
–  Return the root 
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1 

2 

3 

4 5 

6 

7 

find(6) = 7 



Union 
union(x,y): 

–  Assume x and y are roots 
•  Else find the roots of their trees 

–  Change root of one to have parent be the root of the other 
•  Notice no limit on branching factor 

 

14 

1 

2 

3 

4 5 

6 

7 
union(1,7) 



Simple implementation 

•  If set elements are contiguous numbers (e.g., 1,2,…,n), use  
array of length n called up 
–  Starting at index 1 on slides 
–  Put in array index of parent, with 0 (or -1, etc.) for a root 

•  Example: 

•  Example: 

15 

1 

2 

3 

4 5 

6 

7 0 1 0 7 7 5 0 
1   2    3    4   5    6   7 

up 

1 2 3 4 5 6 7 0 0 0 0 0 0 0 
1   2    3    4   5    6   7 

up 



Implement operations 

•  Worst-case run-time for union?   

•  Worst-case run-time for find?   

•  Worst-case run-time for m finds and n-1 unions?   
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// assumes x in range 1,n 
int find(int x) { 
 while(up[x] != 0) { 

     x = up[x]; 
  } 
  return x; 
} 
  

// assumes x,y are roots 
void union(int x, int y){ 
 up[y] = x; 

} 
  

1 

2 

3 

4 5 

6 

7 

0 1 0 7 7 5 0 
1   2    3    4   5    6   7 

up 

O(1) 
O(n) 

O(m*n) 



Two key optimizations 

1.  Improve union so it stays O(1) but makes find O(log n)  
–  So m finds and n-1 unions is O(m log n + n) 
–  Union-by-size: connect smaller tree to larger tree 

2.  Improve find so it becomes even faster 
–  Make m finds and n-1 unions almost O(m + n) 
–  Path-compression: connect directly to root during finds 
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The bad case to avoid 
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1 2 3 n … 

1 

2 3 n union(2,1) 

1 

2 

3 n 
union(3,2) 

union(n,n-1) 

… 

… 

1 

2 

3 

n 

: 
. 

find(1) = n steps!! 



Union-by-size 

Union-by-size: 
–  Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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1 

2 

3 

4 5 

6 

7 

union(1,7) 

2 4 1 



Union-by-size 

Union-by-size: 
–  Always point the smaller (total # of nodes) tree to the root of 

the larger tree 
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1 

2 

3 

4 5 

6 

7 
union(1,7) 

6 1 



Array implementation 

Keep the size (number of nodes in a second array) 
–  Or have one array of objects with two fields 
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1 

2 

3 2 1 
0 
2 

1 0 
1 

7 7 5 0 
4 

1   2  3   4  5   6  7   
up 

weight 
4 5 

6 

7 4 

1 

2 

3 1 
7 1 0 

1 
7 7 5 0 

6 
up 

weight 
4 5 

6 

7 6 1   2  3   4  5   6  7   



Nifty trick 

Actually we do not need a second array… 
–  Instead of storing 0 for a root, store negation of size 
–  So up value < 0 means a root 
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1 

2 

3 2 1 

-2 1 -1 7 7 5 -4 
1   2   3  4  5   6   7   

up 4 5 

6 

7 4 

1 

2 

3 1 

7 1 -1 7 7 5 -6 up 4 5 

6 

7 6 1   2   3  4  5  6   7   



The Bad case? Now a Great case… 
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union(2,1) 

union(3,2) 

union(n,n-1) 

: 
 

find(1)   constant here 

1 2 3 n 

1 

2 3 n 

1 

2 

3 

n 

… 

… 

1 

2 

3 n … 



General analysis 

•  Showing one worst-case example is now good is not a proof 
that the worst-case has improved 

•  So let’s prove: 
–  union is still O(1) – this is “obvious” 
–  find is now O(log n)  

•  Claim: If we use union-by-size, an up-tree of height h has at 
least 2h nodes 
–  Proof by induction on h… 
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Exponential number of nodes 

P(h)= With union-by-size, up-tree of height h has at least 2h nodes 

Proof by induction on h… 
 

•  Base case: h = 0: The up-tree has 1 node and 20= 1 
•  Inductive case: Assume P(h) and show P(h+1) 

–  A height h+1 tree T has at least one height h child T1 
–  T1 has at least 2h nodes by induction (assumption) 
–  And T has at least as many nodes not in T1 than in T1 

•  Else union-by-size would have  
   had T point to T1, not T1 point to T (!!) 

–  So total number of nodes is at least 2h + 2h = 2h+1
. 
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h 
T1 

T 



The key idea 

Intuition behind the proof: No one child can have more than half the 
nodes 
 
 
 
 
 
As usual, if number of nodes is exponential in height, 
then height is logarithmic in number of nodes 
 
So find is O(log n)  
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h 
T1 

T 



The new worst case 
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n/2 Unions-by-size 
 
 
 
n/4 Unions-by-size 
 
 
 
 
n/8 Unions-by-size 



The new worst case (continued) 
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After n/2 + n/4 + …+ 1 Unions-by-size: 

Worst 
find Height grows by 1 a total of log n times 

log n 



What about union-by-height 

We could store the height of each root rather than size 
 
•  Still guarantees logarithmic worst-case find 

–  Proof left as an exercise if interested 

•  But does not work well with our next optimization 
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Two key optimizations 

1.  Improve union so it stays O(1) but makes find O(log n)  
–  So m finds and n-1 unions is O(m log n + n) 
–  Union-by-size: connect smaller tree to larger tree 

2.  Improve find so it becomes even faster 
–  Make m finds and n-1 unions almost O(m + n) 
–  Path-compression: connect directly to root during finds 
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Path compression 

•  Simple idea: As part of a find, change each encountered 
node’s parent to point directly to root 
–  Faster future finds for everything on the path (and their 

descendants) 
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6 

7 

find(3) 

8 9 

10 

1 

2 3 4 5 6 

7 

8 9 10 

11 12 

11 12 



Pseudocode 
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// performs path compression 
int find(i) { 
  // find root 
  int r = i 
   while(up[r] > 0) 
     r = up[r] 
 
  // compress path 
  if i==r 
    return r; 
  int old_parent = up[i] 
  while(old_parent != r) { 
    up[i] = r 
    i = old_parent; 
    old_parent = up[i] 
  } 
  return r; 
} 
  

3 

5 

6 

7 

find(3) 

10 

3 5 6 

7 

10 

11 12 

11 12 

i=3 
r=3 
 
r=6 
r=5 
r=7 

old_parent=6 
 
up[3]=7 
i=6 
old_parent=5 
 
up[6]=7 
i=5 
old_parent=7 
 

Example 



So, how fast is it? 

A single worst-case find could be O(log n)  
–  But only if we did a lot of worst-case unions beforehand 
–  And path compression will make future finds faster 

Turns out the amortized worst-case bound is much better than O(log n)  
–  We won’t prove it – see text if curious 
–  But we will understand it: 

•  How it is almost O(1) 
•  Because total for m finds and n-1 unions is almost O(m+n) 
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A really slow-growing function 

log* x is the minimum number of times you need to apply “log of 
log of log of” to go from x to a number <= 1 
 
For just about every number we care about, log* x is less than or 
equal to 5 (!) 
If x <= 265536 then log* x <= 5 

–  log* 2 = 1 
–  log* 4 = log* 22 = 2 
–  log* 16 = log* 2(22) = 3           (log log log 16 = 1) 
–  log* 65536 = log* 2((22)2) = 4    (log log log log 65536 = 1) 
–  log* 265536 = …………… = 5 
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Almost linear 

•  Turns out total time for m finds and n-1 unions is  
 O((m+n)*(log* (m+n)) 

–  Remember, if m+n < 265536 then log* (m+n) < 5 
 so effectively we have O(m+n) 

•  Because log* grows soooo slowly 
–  For all practical purposes, amortized bound is constant, i.e., 

cost of find is constant, total cost for m finds is linear 
–  We say “near linear” or “effectively linear” 

•  Need union-by-size and path-compression for this bound 
–  Path-compression changes height but not weight, so they 

interact well 
•  As always, asymptotic analysis is separate from “coding it up” 
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