
CSE373: Data Structures & Algorithms

Lecture 10: Implementing Union-Find

Lauren Milne
Summer 2015

Announcements

•  Homework 3 due in ONE week…Wednesday July 22nd!

•  TA Sessions will remain the same time.

•  Midterm on Friday
–  Exam review Thursday 5-6 pm in EEB 125

2

The plan

Last lecture:

•  Disjoint sets

•  The union-find ADT for disjoint sets

Today’s lecture:

•  Finish maze application
•  Basic implementation of the union-find ADT with “up trees”

•  Optimizations that make the implementation much faster

3

Example application: maze-building

•  Build a random maze by erasing edges

–  Possible to get from anywhere to anywhere
•  Including “start” to “finish”

–  No loops possible without backtracking
•  After a “bad turn” have to “undo”

4

The algorithm
•  P = disjoint sets of connected cells

 initially each cell in its own 1-element set
•  E = set of edges not yet processed, initially all (internal) edges
•  M = set of edges kept in maze (initially empty)

while P has more than one set {
–  Pick a random edge (x,y) to remove from E
–  u = find(x)
–  v = find(y)
–  if u==v
 add (x,y) to M // same subset, leave edge in maze, do not create cycle
 else

 union(u,v) // connect subsets, remove edge from maze
}
Add remaining members of E to M, then output M as the maze

5

Example

6

Pick edge (8,14)
Find(8) = 7
Find(14) = 20
Union(7,20)

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Example

7

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32,33,34,35,36}

Find(8) = 7
Find(14) = 20

Union(7,20)

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32,33,34,35,36}

Example: Add edge to M step

8

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Pick edge (19,20)
Find (19) = 7
Find (20) = 7
Add (19,20) to M

At the end of while loop

•  Stop when P has one set (i.e. all cells connected)
•  Suppose green edges are already in M and black edges were

not yet picked
–  Add all black edges to M

9

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

Done! J

Union-Find ADT

•  create an initial partition of a set
–  Typically each item in its own subset: {a}, {b}, {c}, …
–  Name each subset by choosing a representative element

•  find takes an element of S and returns the representative
element of the subset it is in

•  union takes two subsets and (permanently) makes one larger
subset

10

Implementation – our goal

•  Start with an initial partition of n subsets
–  Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

•  May have m find operations

•  May have up to n-1 union
–  After n-1 union operations, every find returns same 1 set

11

Up-tree data structure

•  Tree with:
–  No limit on branching factor
–  References from children to parent

•  Start with forest of 1-node trees

•  Possible forest after several unions:
–  Will use roots for
 set names

12

1 2 3 4 5 6 7

1

2

3

4 5

6

7

Find

find(x):
–  Assume we have O(1) access to each node

•  Will use an array where index i holds node i
–  Start at x and follow parent pointers to root
–  Return the root

13

1

2

3

4 5

6

7

find(6) = 7

Union
union(x,y):

–  Assume x and y are roots
•  Else find the roots of their trees

–  Change root of one to have parent be the root of the other
•  Notice no limit on branching factor

14

1

2

3

4 5

6

7
union(1,7)

Simple implementation

•  If set elements are contiguous numbers (e.g., 1,2,…,n), use
array of length n called up
–  Starting at index 1 on slides
–  Put in array index of parent, with 0 (or -1, etc.) for a root

•  Example:

•  Example:

15

1

2

3

4 5

6

7 0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

1 2 3 4 5 6 7 0 0 0 0 0 0 0
1 2 3 4 5 6 7

up

Implement operations

•  Worst-case run-time for union?

•  Worst-case run-time for find?

•  Worst-case run-time for m finds and n-1 unions?
16

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 up[y] = x;

}

1

2

3

4 5

6

7

0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

O(1)
O(n)

O(m*n)

Two key optimizations

1.  Improve union so it stays O(1) but makes find O(log n)
–  So m finds and n-1 unions is O(m log n + n)
–  Union-by-size: connect smaller tree to larger tree

2.  Improve find so it becomes even faster
–  Make m finds and n-1 unions almost O(m + n)
–  Path-compression: connect directly to root during finds

17

The bad case to avoid

18

1 2 3 n …

1

2 3 n union(2,1)

1

2

3 n
union(3,2)

union(n,n-1)

…

…

1

2

3

n

:
.

find(1) = n steps!!

Union-by-size

Union-by-size:
–  Always point the smaller (total # of nodes) tree to the root of

the larger tree

19

1

2

3

4 5

6

7

union(1,7)

2 4 1

Union-by-size

Union-by-size:
–  Always point the smaller (total # of nodes) tree to the root of

the larger tree

20

1

2

3

4 5

6

7
union(1,7)

6 1

Array implementation

Keep the size (number of nodes in a second array)
–  Or have one array of objects with two fields

21

1

2

3 2 1
0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
up

weight
4 5

6

7 4

1

2

3 1
7 1 0

1
7 7 5 0

6
up

weight
4 5

6

7 6 1 2 3 4 5 6 7

Nifty trick

Actually we do not need a second array…
–  Instead of storing 0 for a root, store negation of size
–  So up value < 0 means a root

22

1

2

3 2 1

-2 1 -1 7 7 5 -4
1 2 3 4 5 6 7

up 4 5

6

7 4

1

2

3 1

7 1 -1 7 7 5 -6 up 4 5

6

7 6 1 2 3 4 5 6 7

The Bad case? Now a Great case…

23

union(2,1)

union(3,2)

union(n,n-1)

:

find(1) constant here

1 2 3 n

1

2 3 n

1

2

3

n

…

…

1

2

3 n …

General analysis

•  Showing one worst-case example is now good is not a proof
that the worst-case has improved

•  So let’s prove:
–  union is still O(1) – this is “obvious”
–  find is now O(log n)

•  Claim: If we use union-by-size, an up-tree of height h has at
least 2h nodes
–  Proof by induction on h…

24

Exponential number of nodes

P(h)= With union-by-size, up-tree of height h has at least 2h nodes

Proof by induction on h…

•  Base case: h = 0: The up-tree has 1 node and 20= 1
•  Inductive case: Assume P(h) and show P(h+1)

–  A height h+1 tree T has at least one height h child T1
–  T1 has at least 2h nodes by induction (assumption)
–  And T has at least as many nodes not in T1 than in T1

•  Else union-by-size would have
 had T point to T1, not T1 point to T (!!)

–  So total number of nodes is at least 2h + 2h = 2h+1
.

25

h
T1

T

The key idea

Intuition behind the proof: No one child can have more than half the
nodes

As usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes

So find is O(log n)

26

h
T1

T

The new worst case

27

n/2 Unions-by-size

n/4 Unions-by-size

n/8 Unions-by-size

The new worst case (continued)

28

After n/2 + n/4 + …+ 1 Unions-by-size:

Worst
find Height grows by 1 a total of log n times

log n

What about union-by-height

We could store the height of each root rather than size

•  Still guarantees logarithmic worst-case find

–  Proof left as an exercise if interested

•  But does not work well with our next optimization

29

Two key optimizations

1.  Improve union so it stays O(1) but makes find O(log n)
–  So m finds and n-1 unions is O(m log n + n)
–  Union-by-size: connect smaller tree to larger tree

2.  Improve find so it becomes even faster
–  Make m finds and n-1 unions almost O(m + n)
–  Path-compression: connect directly to root during finds

30

Path compression

•  Simple idea: As part of a find, change each encountered
node’s parent to point directly to root
–  Faster future finds for everything on the path (and their

descendants)

31

1

2

3

4 5

6

7

find(3)

8 9

10

1

2 3 4 5 6

7

8 9 10

11 12

11 12

Pseudocode

32

// performs path compression
int find(i) {
 // find root
 int r = i
 while(up[r] > 0)
 r = up[r]

 // compress path
 if i==r
 return r;
 int old_parent = up[i]
 while(old_parent != r) {
 up[i] = r
 i = old_parent;
 old_parent = up[i]
 }
 return r;
}

3

5

6

7

find(3)

10

3 5 6

7

10

11 12

11 12

i=3
r=3

r=6
r=5
r=7

old_parent=6

up[3]=7
i=6
old_parent=5

up[6]=7
i=5
old_parent=7

Example

So, how fast is it?

A single worst-case find could be O(log n)
–  But only if we did a lot of worst-case unions beforehand
–  And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(log n)
–  We won’t prove it – see text if curious
–  But we will understand it:

•  How it is almost O(1)
•  Because total for m finds and n-1 unions is almost O(m+n)

33

A really slow-growing function

log* x is the minimum number of times you need to apply “log of
log of log of” to go from x to a number <= 1

For just about every number we care about, log* x is less than or
equal to 5 (!)
If x <= 265536 then log* x <= 5

–  log* 2 = 1
–  log* 4 = log* 22 = 2
–  log* 16 = log* 2(22) = 3 (log log log 16 = 1)
–  log* 65536 = log* 2((22)2) = 4 (log log log log 65536 = 1)
–  log* 265536 = …………… = 5

 34

Almost linear

•  Turns out total time for m finds and n-1 unions is
 O((m+n)*(log* (m+n))

–  Remember, if m+n < 265536 then log* (m+n) < 5
 so effectively we have O(m+n)

•  Because log* grows soooo slowly
–  For all practical purposes, amortized bound is constant, i.e.,

cost of find is constant, total cost for m finds is linear
–  We say “near linear” or “effectively linear”

•  Need union-by-size and path-compression for this bound
–  Path-compression changes height but not weight, so they

interact well
•  As always, asymptotic analysis is separate from “coding it up”

35

