CSE373: Data Structures \& Algorithms Lecture 10: Implementing Union-Find

Lauren Milne
Summer 2015

Announcements

- Homework 3 due in ONE week...Wednesday July 22nd!
- TA Sessions will remain the same time.
- Midterm on Friday
- Exam review Thursday 5-6 pm in EEB 125

The plan

Last lecture:

- Disjoint sets
- The union-find ADT for disjoint sets

Today's lecture:

- Finish maze application
- Basic implementation of the union-find ADT with "up trees"
- Optimizations that make the implementation much faster

Example application: maze-building

- Build a random maze by erasing edges

- Possible to get from anywhere to anywhere
- Including "start" to "finish"
- No loops possible without backtracking
- After a "bad turn" have to "undo"

The algorithm

- $P=$ disjoint sets of connected cells
initially each cell in its own 1-element set
- $\mathrm{E}=$ set of edges not yet processed, initially all (internal) edges
- $M=$ set of edges kept in maze (initially empty)
while P has more than one set \{
- Pick a random edge (x, y) to remove from E
- $u=$ find (x)
$-\mathrm{v}=$ find (y)
- if $u==v$
add (x, y) to $\mathrm{M} / /$ same subset, leave edge in maze, do not create cycle else
union(u,v) // connect subsets, remove edge from maze
\}
Add remaining members of E to M , then output M as the maze

Example

Pick edge $(8,14)$
Find $(8)=7$
Find(14) $=20$
Union $(7,20)$

Start \begin{tabular}{cc|c|c|c|c|}
\hline 1 \& 2 \& 3 \& 4 \& 5 \& 6

\cline { 5 - 6 } | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 |

$.$

End
\end{tabular}

Example

P	
$\{1,2,7,8,9,13,19\}$	
$\{3\}$	
$\{4\}$	
$\{\underline{5}\}$	Find $(8)=7$
$\{6\}$	
$\{10\}$	
$\{11, \underline{17}\}$	
$\{12\}$	
$\{14, \underline{20}, 26,27\}$	
$\{15,16,21\}$	
$\{18\}$	
$\{25\}$	
$\{\underline{25}\}$	
$\{31\}$	
$\{22,23,24,29,30,32,33, \underline{34}, 35,36\}$	

P

\{1,2,7,8,9,13,19,14,20,26,27\}\{3\}
\{4\}
\{6\}
\{10\}
$\{11,17\}$
\{12\}
\{15,16,21\}
\{18\}
\{25\}
\{28\}
\{31\}
$\{22,23,24,29,30,32,33,34,35,36\}$

Example: Add edge to M step

Pick edge $(19,20)$
Find (19) $=7$
Find (20) $=7$
Add $(19,20)$ to M

Start 1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

P
$\{1,2,7,8,9,13,19,14,20,26,27\}$
\{3\}
\{4\}
\{5\}
\{6\}
\{10\}
$\{11,17\}$
\{12\}
$\{15,16,21\}$
\{18\}
\{25\}
\{28\}
\{31\}
\{22,23,24,29,30,32
33,34,35,36\}

At the end of while loop

- Stop when P has one set (i.e. all cells connected)
- Suppose green edges are already in M and black edges were not yet picked
- Add all black edges to M
Start 1

7	2	3	4	5	6
13	14	9	10	11	12
19	20	16	17	18	
21	22	23	24		
25	26	27	28	29	30
31	32	33	34	35	36

P
$\{1,2,3,4,5,6, \underline{7}, \ldots 36\}$

Done! :

Union-Find ADT

- create an initial partition of a set
- Typically each item in its own subset: \{a\}, \{b\}, \{c\}, ...
- Name each subset by choosing a representative element
- find takes an element of S and returns the representative element of the subset it is in
- union takes two subsets and (permanently) makes one larger subset

Implementation - our goal

- Start with an initial partition of n subsets
- Often 1-element sets, e.g., $\{1\},\{2\},\{3\}, \ldots,\{n\}$
- May have m find operations
- May have up to $n-1$ union
- After n-1 union operations, every find returns same 1 set

Up-tree data structure

- Tree with:
- No limit on branching factor
- References from children to parent
- Start with forest of 1-node trees
- Possible forest after several unions:
- Will use roots for set names

Find

find(\mathbf{x}):

- Assume we have $O(1)$ access to each node
- Will use an array where index i holds node i
- Start at \mathbf{x} and follow parent pointers to root
- Return the root
find(6) $=7$

(3)

Union

union(\mathbf{x}, \mathbf{y}):

- Assume x and y are roots
- Else find the roots of their trees
- Change root of one to have parent be the root of the other
- Notice no limit on branching factor
union(1,7)

Simple implementation

- If set elements are contiguous numbers (e.g., $1,2, \ldots, n$), use array of length n called up
- Starting at index 1 on slides
- Put in array index of parent, with 0 (or -1, etc.) for a root
- Example:

	1	2			4	5		6	7	7
up	0	0			0	0		0	0	

- Example:

Implement operations

```
// assumes x in range 1,n
int find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
// assumes \(\mathrm{x}, \mathrm{y}\) are roots void union(int \(x\), int \(y\) ) \{ up \([y]=\mathbf{x}\);
\}
\}
return \(\mathbf{x}\);
\}
```


	1	2	3		4	5		6	7
up	0	1	0		7	7	5		0

- Worst-case run-time for union? $O(1)$
- Worst-case run-time for find? $\boldsymbol{O}(\mathrm{n})$
- Worst-case run-time for m finds and $n-1$ unions? $\boldsymbol{O}(\mathbf{m} * \mathbf{n})$

Two key optimizations

1. Improve union so it stays $O(1)$ but makes find $O(\log n)$

- So m finds and $n-1$ unions is $O(m \log n+n)$
- Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster

- Make m finds and $n-1$ unions almost $O(m+n)$
- Path-compression: connect directly to root during finds

The bad case to avoid

(3) n (n)

find(1) $=n$ steps!!

Union-by-size

Union-by-size:

- Always point the smaller (total \# of nodes) tree to the root of the larger tree

Union-by-size

Union-by-size:

- Always point the smaller (total \# of nodes) tree to the root of the larger tree

Array implementation

Keep the size (number of nodes in a second array)

- Or have one array of objects with two fields

Nifty trick

Actually we do not need a second array...

- Instead of storing 0 for a root, store negation of size
- So up value < 0 means a root

The Bad case? Now a Great case...

(1) (2) (3) union (2, 1)

(3)
(n) union(3,2)

(n) union(n, $n-1$)

find(1) constant here

General analysis

- Showing one worst-case example is now good is not a proof that the worst-case has improved
- So let's prove:
- union is still $O(1)$ - this is "obvious"
- find is now $O(\log n)$
- Claim: If we use union-by-size, an up-tree of height h has at least 2^{h} nodes
- Proof by induction on h...

Exponential number of nodes

$\mathrm{P}(h)=$ With union-by-size, up-tree of height h has at least 2^{h} nodes
Proof by induction on $h \ldots$

- Base case: $h=0$: The up-tree has 1 node and $2^{0}=1$
- Inductive case: Assume $P(h)$ and show $P(h+1)$
- A height $h+1$ tree T has at least one height h child T1
- T1 has at least 2^{h} nodes by induction (assumption)
- And T has at least as many nodes not in T1 than in T1
- Else union-by-size would have had T point to T1, not T1 point to T (!!)
- So total number of nodes is at least $2^{h}+2^{h}=2^{h+1}$

The key idea

Intuition behind the proof: No one child can have more than half the nodes

As usual, if number of nodes is exponential in height, then height is logarithmic in number of nodes

So find is $O(\log n)$

The new worst case

n/2 Unions-by-size
!

n/4 Unions-by-size

n/8 Unions-by-size

The new worst case (continued)

After n/2 + n/4 + ...+ 1 Unions-by-size:

What about union-by-height

We could store the height of each root rather than size

- Still guarantees logarithmic worst-case find
- Proof left as an exercise if interested
- But does not work well with our next optimization

Two key optimizations

1. Improve union so it stays $O(1)$ but makes find $O(\log n)$

- So m finds and $n-1$ unions is $O(m \log n+n)$
- Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster

- Make m finds and $n-1$ unions almost $O(m+n)$
- Path-compression: connect directly to root during finds

Path compression

- Simple idea: As part of a find, change each encountered node's parent to point directly to root
- Faster future finds for everything on the path (and their descendants)

Pseudocode

```
// performs path compression
int find(i) {
    // find root
    int r = i
    while(up[r] > 0)
    r = up[r]
```

 // compress path
 if \(i==r\)
 return r;
 int old_parent \(=\) up[i]
 while(old_parent != r) \{
 up[i] = r
 i = old_parent;
 old_parent = up[i]
 \}
return r;

Example

$$
i=3
$$

$$
r=3
$$

$$
r=6
$$

$$
r=5
$$

$$
\begin{equation*}
r=7 \tag{11}
\end{equation*}
$$

old_parent=6
up [3]=7
i=6
old_parent=5
up [6]=7
i=5
old_parent=7

int old parent $=$ up [i]
while(old_parent != r) \{ up[i] = r
i = old_parent;
old_parent $=$ up[i]
\}
return r;

So, how fast is it?

A single worst-case find could be $O(\log n)$

- But only if we did a lot of worst-case unions beforehand
- And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than $O(\log n)$

- We won't prove it - see text if curious
- But we will understand it:
- How it is almost $O(1)$
- Because total for m finds and $n-1$ unions is almost $O(m+n)$

A really slow-growing function

$\log * x$ is the minimum number of times you need to apply " \log of \log of \log of" to go from x to a number <= 1

For just about every number we care about, log* x is less than or equal to 5 (!)

$$
\text { If } \begin{aligned}
x & <2^{65536} \text { then } \log ^{*} x<=5 \\
& -\log ^{*} 2=1 \\
& -\log ^{*} 4=\log ^{*} 2^{2}=2 \\
& -\log ^{*} 16=\log ^{*} 2^{\left(2^{2}\right)}=3 \quad(\log \log \log 16=1) \\
& -\log ^{*} 65536=\log ^{*} 2^{\left(\left(2^{2}\right)^{2}\right)}=4 \quad(\log \log \log \log 65536=1) \\
& -\log ^{*} 2^{65536}=\ldots \ldots \ldots \ldots . .=5
\end{aligned}
$$

Almost linear

- Turns out total time for m finds and $n-1$ unions is

$$
O\left((m+n)^{*}(\log *(m+n))\right.
$$

- Remember, if $m+n<265336$ then log* $(m+n)<5$ so effectively we have $\mathrm{O}(m+n)$
- Because log* grows soooo slowly
- For all practical purposes, amortized bound is constant, i.e., cost of find is constant, total cost for m finds is linear
- We say "near linear" or "effectively linear"
- Need union-by-size and path-compression for this bound
- Path-compression changes height but not weight, so they interact well
- As always, asymptotic analysis is separate from "coding it up"

