
CSE373: Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks/Queues

Lauren Milne
Summer 2015

Welcome!

We will learn fundamental data structures and algorithms for
organizing and processing information
–  “Classic” data structures / algorithms
–  Analyze efficiency
–  When to use them

Today in class:
•  Introductions and course mechanics
•  What this course is about
•  Start abstract data types (ADTs), stacks, and queues

2

Course staff

3

Lauren Milne
3rd Year CSE Ph.D. Grad Student
Works with Richard Ladner in Accessibility
Does triathlons and skijoring in free time

milnel2@cs.washington.edu
cse373-staff@cs.washington.edu

Course staff

4

Jiechen Chen
2nd Year CSE Ph.D. Grad Student
Works in Theory. She moved 7 times
Before graduating from college!

cse373-staff@cs.washington.edu

Course staff

5

Yanling He
5th Year CSE Masters Student,
Who loves climbing and caving.

cse373-staff@cs.washington.edu

Course staff

6

Naozumi Hiranuma

cse373-staff@cs.washington.edu

Course staff

7

Mert Saglam
2nd Year CSE Ph.D. Grad Student
Works in Complexity Theory

cse373-staff@cs.washington.edu

Course staff

8

Mauricio Hernandez
Junior majoring in Electrical Engineering
With a concentration in Embedded Systems
Originally from Tabasco, Mexico!

cse373-staff@cs.washington.edu

Course Information

•  http://courses.cs.washington.edu/courses/cse373/15su/

•  Textbook: Weiss 3rd Edition in Java

•  Course email list: cse373a_15sp@u.washington.edu

•  College of Arts & Sciences Instructional Computing Lab

–  http://depts.washington.edu/aslab/
–  Or your own machine

•  Will use Java for the programming assignments

•  Eclipse is recommended programming environment

9

Office Hours

•  M 1:30-2:30 (Lauren)
•  Tu 12-1 pm (Jiechen)
•  W 12-1 pm (Nao)
•  W 4-5 pm (Mert)
•  Th 9:30-10:30 am (Yanling)
•  F 12-1 pm (Mauricio)

Do these work for everyone?

10

Collaboration and Academic Integrity

DON’T CHEAT!

Seriously, read the policy online, follow Gilligan’s Island rule.

11

What this course will cover

•  Introduction to Algorithm Analysis

•  Lists, Stacks, Queues

•  Trees, Hashing, Dictionaries

•  Heaps, Priority Queues

•  Sorting

•  Disjoint Sets

•  Graph Algorithms

•  Introduction to Parallelism and Concurrency

12

Goals

•  Be able to make good design choices as a developer

•  Be able to justify and communicate your design decisions

•  This is not a course about Java!

13

To-do list

In next 24-48 hours:
•  Read the web page
•  Read all course policies
•  Read Chapters 3.1 (lists), 3.6 (stacks) and 3.7 (queues) of the

Weiss book
–  Relevant to Homework 1, due next week!

•  Set up your Java environment for Homework 1

http://courses.cs.washington.edu/courses/cse373/15su/

14

Data structures

A data structure is a way to organize information to enable efficient
computation over that information

What are some examples?

15

push pop

enqueue dequeue

Data structures

A data structure is a way to organize information to enable efficient
computation over that information

16

push pop

 It supports certain
operations, each with a:
•  Meaning

•  Performance

Trade-offs

A data structure strives to provide many useful, efficient operations.

But there are unavoidable trade-offs:

–  Time vs space
–  One operation’s efficiency vs another
–  Generality vs simplicity vs performance

So, when should I use different data structures?

17

Terminology

•  Abstract Data Type (ADT)
–  Mathematical description of a “thing” with set of operations
–  Not concerned with implementation details

•  Data structure
–  A specific organization of data and family of algorithms for

implementing an ADT

•  Algorithm
–  A high level, language-independent description of a step-by-

step process

•  Implementation of a data structure
–  A specific implementation in a specific language

18

Example: Stacks

•  The Stack ADT supports operations:
–  isEmpty
–  push
–  pop
–  What else?

•  A Stack data structure could use a linked-list or an array and
associated algorithms for the operations

•  One implementation is in the library java.util.Stack

19

push pop

Why Useful

Stack ADT arises all the time in programming
•  Recursive function calls
•  Balancing symbols in programming (parenthesis)
•  Evaluating postfix notation: 3 4 + 5 *
•  Conversion from infix ((3+4)*5) to postfix notation

We can code up a reusable library

We can communicate in high-level terms

20

Stack Implementations

•  stack as an array

•  stack as a linked list

21

1.  Initially empty
2.  Push(‘a’)
3.  Push(‘b’)
4.  Pop()

The Queue ADT

•  Operations
–  enqueue
–  dequeue
–  is_empty
–  What else?

•  Just like a stack except:
–  Stack: LIFO (last-in-first-out)
–  Queue: FIFO (first-in-first-out)

22

Back Front

enqueue dequeue

Circular Array Queue Data Structure

23

// Basic idea only!
enqueue(x) {
 next = (back + 1) % size
 Q[next] = x;
 back = next
}

// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

b c d e f
Q: 0 size - 1

front back

•  What if queue is empty?
•  What if array is full?
•  How to test for empty?
•  What is the complexity of

the operations?
•  Can you find the kth

element in the queue?
•  Why do we use a circular

array for a queue vs a
standard array for a stack?

In Class Practice

24

enqueue(‘A’)
enqueue(‘B’)
enqueue(‘C’)
o = dequeue()
o = dequeue()
enqueue(‘D’)
enqueue(‘E’)
enqueue(‘F’)
enqueue(‘G’)
enqueue(‘H’)
enqueue(‘I’)

front back

// Basic idea only!
enqueue(x) {
 next = (back + 1) % size
 Q[next] = x;
 back = next
}

// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

25

b

enqueue(‘A’)

enqueue(‘B’)

enqueue(‘C’)

o = dequeue()

f

f

f

f

f

A

A B

A B C

B C

b

b

b

b

26

o = dequeue

enqueue(‘D’)

enqueue(‘E’)

enqueue(‘F’)

enqueue(‘G’), enqueue(‘H’)

enqueue(‘i’)

f

f

f

f

f

b

 C

C D

C D E

C D E F

G H C D E F

b

b

b

b

Linked List Queue Data Structure

27

b c d e f

front back

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}

// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

•  What if queue is empty?
–  Enqueue?
–  Dequeue?

•  Can list be full?
•  How to test for empty?
•  What is the complexity of

the operations?
•  Can you find the kth

element in the queue?

Circular Array vs. Linked List

Array:
–  May waste unneeded space or

run out of space
–  Space per element excellent
–  Operations very simple / fast
–  Constant-time access to kth

element
–  For operation insertAtPosition,

must shift all later elements
–  Not in Queue ADT

List:
–  Always just enough space

–  But more space per element
–  Operations very simple / fast
–  No constant-time access to kth

element
–  For operation insertAtPosition

must traverse all earlier elements
–  Not in Queue ADT

28

Conclusion

•  Abstract data structures allow us to define a new data type and
its operations.

•  Each abstraction will have one or more implementations.

•  Which implementation to use depends on the application, the
expected operations, the memory and time requirements.

•  Both stacks and queues have array and linked implementations.

•  We’ll look at other ordered-queue implementations later.

29

