CSE373: Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks/Queues

Lauren Milne
Summer 2015

Welcome!

We will learn fundamental data structures and algorithms for
organizing and processing information

— “Classic” data structures / algorithms
— Analyze efficiency
— When to use them

Today in class:
* |ntroductions and course mechanics
 What this course is about

« Start abstract data types (ADTs), stacks, and queues

Course staff

Lauren Milne
3 Year CSE Ph.D. Grad Student

Works with Richard Ladner in Accessibility
Does triathlons and skijoring in free time

milnel2@cs.washington.edu
cse373-staff@cs.washington.edu

Course staff

Jiechen Chen

2nd Year CSE Ph.D. Grad Student
Works in Theory. She moved 7 times
Before graduating from college!

cse373-staff@cs.washington.edu

Course staff

Yanling He
5t Year CSE Masters Student,
Who loves climbing and caving.

cse373-staff@cs.washington.edu

Course staff

Naozumi Hiranuma

cse373-staff@cs.washington.edu

Course staff

Mert Saglam
2"d Year CSE Ph.D. Grad Student
Works in Complexity Theory

cse373-staff@cs.washington.edu

Course staff

Mauricio Hernandez
Junior majoring in Electrical Engineering
With a concentration in Embedded Systems

Originally from Tabasco, Mexico!

cse373-staff@cs.washington.edu

Course Information

« http://courses.cs.washington.edu/courses/cse373/15su/
« Textbook: Weiss 3 Edition in Java

« Course email list: cse373a_15sp@u.washington.edu
» College of Arts & Sciences Instructional Computing Lab
— http://depts.washington.edu/aslab/
— Or your own machine

* Will use Java for the programming assignments

« Eclipse is recommended programming environment

Office Hours

M 1:30-2:30 (Lauren)
 Tu 12-1 pm (Jiechen)

« W12-1 pm (Nao)

« W4-5pm (Mert)

« Th 9:30-10:30 am (Yanling)
 F 12-1 pm (Mauricio)

Do these work for everyone?

10

Collaboration and Academic Integrity

DON'T CHEAT!

Seriously, read the policy online, follow Gilligan’s Island rule.

11

What this course will cover

* Introduction to Algorithm Analysis
o Lists, Stacks, Queues

« Trees, Hashing, Dictionaries

» Heaps, Priority Queues

« Sorting

« Disjoint Sets

« Graph Algorithms

* Introduction to Parallelism and Concurrency

12

Goals

Be able to make good design choices as a developer

Be able to justify and communicate your design decisions

This is not a course about Javal

13

To-do list

In next 24-48 hours:

Read the web page
Read all course policies

Read Chapters 3.1 (lists), 3.6 (stacks) and 3.7 (queues) of the
Weiss book

— Relevant to Homework 1, due next week!
Set up your Java environment for Homework 1

http://courses.cs.washington.edu/courses/cse373/15su/

14

Data structures

A data structure is a way to organize information to enable efficient
computation over that information

What are some examples?

]
push

pop

enqueue dequeue

-

15

Data structures

A data structure is a way to organize information to enable efficient
computation over that information

It supports certain

] operations, each with a:
* Meaning
pop

]
push

 Performance

-

16

Trade-offs

A data structure strives to provide many useful, efficient operations.
But there are unavoidable trade-offs:
— Time vs space

— One operation’s efficiency vs another
— Generality vs simplicity vs performance

So, when should | use different data structures?

17

Terminology

Abstract Data Type (ADT)
— Mathematical description of a “thing” with set of operations
— Not concerned with implementation details

Data structure

— A specific organization of data and family of algorithms for
implementing an ADT

Algorithm

— A high level, language-independent description of a step-by-
step process

Implementation of a data structure
— A specific implementation in a specific language

18

Example: Stacks

L] \ []
« The Stack ADT supports operations: push / pop
L]

— i1sEmpty
— push

- POPpP
— What else?

» A Stack data structure could use a linked-list or an array and
associated algorithms for the operations

* One implementation is in the library java.util.Stack

19

Why Useful

Stack ADT arises all the time in programming

* Recursive function calls

« Balancing symbols in programming (parenthesis)
« Evaluating postfix notation: 34 + 5 *

« Conversion from infix ((3+4)*5) to postfix notation

We can code up a reusable library

We can communicate in high-level terms

20

Stack Implementations

b=

Initially empty
Push(‘a’)
Push('b’)
Pop()

stack as an array

stack as a linked list

21

The Queue ADT

* QOperations
— enqueue
— dequeue
— is _empty
— What else?

« Just like a stack except:
— Stack: LIFO (last-in-first-out)
— Queue: FIFO (first-in-first-out)

Back Front
\’ \’
enqueue dequeue

22

Circular Array Queue Data Structure

Q 0

size - 1

bic|d|e|f

ﬁonJ back

// Basic idea only!
enqueue (x) {
next = (back + 1) % size
Q[next] = x;
back = next

}

// Basic idea only!

dequeue () {
x = Q[front];
front = (front + 1) % size;

return x;

What if queue is empty?
What if array is full?
How to test for empty?

What is the complexity of
the operations?

Can you find the kt
element in the queue?

Why do we use a circular
array for a queue vs a
standard array for a stack?

23

In Class Practice

back front
' '

// Basic idea only!
enqueue (x) {
next = (back + 1) % size
Q[next] = x;
back = next

}

// Basic idea only!

dequeue () {
x = Q[front];
front = (front + 1) % size;

return x;

}

enqueue(‘A’)
enqueue(‘B’)
enqueue(‘C’)
0 = dequeue()
0 = dequeue()
enqueue(‘D’)
enqueue(‘E’)
enqueue(‘F’)
enqueue(‘G’)
enqueue(‘H’)
enqueue(‘l’)

24

— =

«— ="
.

> - > «] —_ >

w<——'-h w

enqueue(‘A’)

enqueue(‘B’)

enqueue(‘C’)

0 = dequeue()

25

1]
C
R
I
C| D
'
i
Cl D
t b
i |
Cl D F
T
vl
H C| D F

0 = dequeue

enqueue(‘D’)

enqueue(‘E’)

enqueue(‘F’)

enqueue(‘G’), enqueue(‘H’)

enqueue(‘i’)
26

Linked List Queue Data Structure

b > C » d > e " f
i i
front back

// Basic idea only!

 What if queue is empty?
enqueue (x) {

_ 2
back.next = new Node (x) ; Enqueue”
back = back.next; — Dequeue?

} . Can list be full?

 How to test for empty?

 What is the complexity of
the operations?

« Can you find the kt
element in the queue?

// Basic idea only!
dequeue () {
x = front.item;
front = front.next;
return x;

27

Circular Array vs. Linked List

Array: List:

— May waste unneeded space or — Always just enough space
run out of space

— Space per element excellent _ Byt more space per element

— Operations very simple /fast ~ _ Qperations very simple / fast

— Constant-time access to k" — No constant-time access to k'
element element

— For operation insertAtPosition, _ For operation insertAtPosition
must shift all later elements must traverse all earlier elements

— Not in Queue ADT — Not in Queue ADT

28

Conclusion

Abstract data structures allow us to define a new data type and
its operations.

« Each abstraction will have one or more implementations.

* Which implementation to use depends on the application, the
expected operations, the memory and time requirements.

« Both stacks and queues have array and linked implementations.

 We’'ll look at other ordered-queue implementations later.

29

