
CSE 373 Data Structures: Homework #2

Due: 10:59 PM Friday, 7/10/15

Here are five questions on complexity and algorithm analysis. You will need to turn in two
files: a PDF with all of your answers, and java code for your tests for problem 4.

For your writeup submission, turn in one PDF file with your answers to the Catalyst Drop
Box https://catalyst.uw.edu/collectit/assignment/milnel2/35880/144555 . You may either
type up all of the questions and save to PDF or complete the questions on paper and scan
them into one PDF file. Make sure it is legible - if we cannot read it we cannot grade it.
Paper copies of the homework will NOT be accepted.

Problem 1.

Suppose T1(n) is O(f(n)) and T2(n) is O(f(n)). Which of the following are always true (for
all T1, f , and T2)?

a. T1(n)/T2(n) is O(1).

b. T1(n) + T2(n) is Ω(f(n)).

c. T1(n)− T2(n) is O(f(n)).

d. T1(n) is O(T2(n)).

e. T2(n) is Θ(T1(n)).

You do not need to prove an item is true (just saying true is enough for full credit), but
if an item is false need to give a counterexample to demonstrate it is false. To give a
counterexample, give values for T1(n), T2(n), and f(n) for which the statement is false
(for example, you could write, “The statement is false if T1(n) = 100n, T2(n) = 2n2, and
f(n) = n3”). Hints: Think about the definitions of big-O, big-Ω, and big-Θ.

Problem 2.

Order the following functions from slowest growth rate to fastest growth rate.

• 272

• n2 log n



• n1.5

• 2n/2

• log n

• n log n2

• n6

• n log log n

• n log2 n

• n

• n2

• n log n

• 2
n

• log2 n

• 2n

•
√
n

If any of the functions grow at the same rate, be sure to indicate this.

Problem 3.

Prove by induction that for all n greater than or equal to 1:

n∑
i=1

i3 =

(
n∑

i=1

i

)2

Hints:

• Start with n = 1 as the base case. In the inductive step, show that

n+1∑
i=1

i3 =

(
n+1∑
i=1

i

)2

via a sequence of steps, including one step that uses the inductive hypothesis.

• You already know what
∑n

i=1 i is for any n (we discussed this in class), and you should
use this fact a couple of times in your proof.

CSE 373 Spring 2014 2



• You will also need to do a little bit of factoring and other algebra manipulations.

Problem 4.

For each of the following six program fragments, do the following:

a. Give an asymptotic analysis of the running time using big-O (or big-Θ, which would
technically be more precise).

b. Implement the code in Java, and give the actual running for several (at least four)
values of n.

c. Compare your analysis with the actual running time.

For part (b), please turn in a copy of your Java code. Hints: you will want to use assorted (at
least 4) large values of n to get meaningful experimental results. You may find the library
function System.nanoTime() to be useful in timing code fragments. A link to some Java
code showing an example of timing can be found at http://courses.cs.washington.edu/
courses/cse373/15su/homework/HW2/Timing.java

1. sum = 0;

for (i = 0; i < n; i++) {

sum++;

}

2. sum = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

sum++;

}

}

3. sum = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < i; j++) {

sum++;

}

}

4. sum = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < n * n; j++) {

sum++;

}

}

CSE 373 Spring 2014 3



5. sum = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < i; j++) {

sum++;

}

for (k = 0; k < 8000; k++) {

sum++;

}

}

6. sum = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < i*i; j++) {

if (j % i == 0) {

for (k = 0; k < j; k++) {

sum++;

}

}

}

}

Note that there are three parts to this question, so be sure to do all three. (a) calculate
big-O, (b) run the code for several values of n (4 or more) and time it, (c) discuss what you
see. For part (c), be sure to say something about what you saw in your run-times; are they
what you expected based on your big-O calculations? If not, any ideas why not? Graphing
the values you got from part (b) might be useful for your discussion. Remember that when
giving the big-O running time for a piece of code we always prefer the tightest bound we
can get.

It is entirely possible that your run-times will not be exactly what you might predict because
Java compilers and modern computers are sophisticated and do many things more than just
“naively run your code.” That is okay (though do make sure your code is implemented
correctly). You will hopefully still at least see some relative trends for different values of n,
but in any case report what you observe and your best possible explanations for what you
are seeing.

Problem 5.

Show that the function 2n3 + 15n + 611 is O(n3). You will need to use the definition of
O(f(n)) to do this. That is, you will need to find values for c and n0 such that the definition
of big-O holds true as we did with the examples in lecture.

Extra Credit Use induction to show that the definition of big-O holds true for all values of
n greater than or equal to the constant n0 you chose.

CSE 373 Spring 2014 4


