
CSE373: Data Structures & Algorithms

Lecture 9: Priority Queues and Binary Heaps

Catie Baker

Spring 2015

Announcements

• Homework 3 is out and due Wednesday April 29th at 11pm

• Office Hours are updated - Check the website

• Lauren will be teaching next week while Catie is out of town

Spring 2015 2CSE 373

Priority Queue ADT

• A priority queue holds compare-able items

• Each item in the priority queue has a “priority” and “data”

– In our examples, the lesser item is the one with the greater priority

– So “priority 1” is more important than “priority 4”

• Operations:

– insert: adds an element to the priority queue

– deleteMin: returns and deletes the item with greatest priority

– is_empty

• Our data structure: A binary min-heap (or binary heap or heap) has:

– Structure property: A complete binary tree

– Heap property: The priority of every (non-root) node is less important

than the priority of its parent (Not a binary search tree)

Spring 2015 3CSE 373

Operations: basic idea

• deleteMin:

1. Remove root node

2. Move right-most node in last

row to root to restore

structure property

3. “Percolate down” to restore

heap property

• insert:

1. Put new node in next position

on bottom row to restore

structure property

2. “Percolate up” to restore

heap property

Spring 2015 4CSE 373

996040

8020

10

50 700

85

Overall strategy:

• Preserve structure property

• Break and restore heap

property

5

DeleteMin

34

9857

106911

Delete (and later return) value at root node

Spring 2015 CSE 373

1

6

DeleteMin: Keep the Structure Property

• We now have a “hole” at the root

– Need to fill the hole with another value

• Keep structure property: When we are done,

the tree will have one less node and must still

be complete

• Pick the last node on the bottom row of the

tree and move it to the “hole”

34

9857

106911

34

9857

106911

Spring 2015 CSE 373

7

DeleteMin: Restore the Heap Property

Percolate down:

• Keep comparing priority of item with both children

• If priority is less important, swap with the most important child and

go down one level

• Done if both children are less important than the item or we’ve

reached a leaf node

34

9857

10

6911

4

9857

10

6911

3

84

91057

6911

3
?

?

Spring 2015 CSE 373

Run time?

Runtime is O(height of heap)

Height of a complete binary tree of n nodes =  log2(n) 

O(log n)

8

Insert

• Add a value to the tree

• Afterwards, structure and heap

properties must still be correct

84

91057

6911

1

2

Spring 2015
CSE 373

9

Insert: Maintain the Structure Property

• There is only one valid tree shape after

we add one more node

• So put our new data there and then

focus on restoring the heap property
84

91057

6911

1

2

Spring 2015 CSE 373

10

Insert: Restore the heap property

2

84

91057

6911

1

Percolate up:

• Put new data in new location

• If parent is less important, swap with parent, and continue

• Done if parent is more important than item or reached root

?

2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

Spring 2015 CSE 373

2

What is the running time?
Like deleteMin, worst-case time proportional to tree height: O(log n)

Spring 2015 11

Array Representation of Binary Trees

GED

CB

A

J KH I

F

L

From node i:

left child: i*2

right child: i*2+1

parent: i/2

(wasting index 0 is

convenient for the

index arithmetic)

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

CSE 373

Judging the array implementation

Plusses:

• Non-data space: just index 0 and unused space on right

– In conventional tree representation, one edge per node

(except for root), so n-1 wasted space (like linked lists)

– Array would waste more space if tree were not complete

• Multiplying and dividing by 2 is very fast (shift operations in

hardware)

• Last used position is just index size

Minuses:

• Same might-be-empty or might-get-full problems we saw with

stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”

Spring 2015 12CSE 373

Pseudocode: insert into binary heap

Spring 2015 13CSE 373

void insert(int val) {

if(size==arr.length-1)

resize();

size++;

i=percolateUp(size,val);

arr[i] = val;

}

int percolateUp(int hole,
int val) {

while(hole > 1 &&
val < arr[hole/2])

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,

you will have data nodes with priorities.

Pseudocode: deleteMin from binary heap

Spring 2015 14CSE 373

int deleteMin() {

if(isEmpty()) throw…

ans = arr[1];

hole = percolateDown

(1,arr[size]);

arr[hole] = arr[size];

size--;

return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole;
right = left + 1;
if(right > size ||

arr[left] < arr[right])
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;
}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 15CSE 373

0 1 2 3 4 5 6 7

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 16CSE 373

16

0 1 2 3 4 5 6 7

16

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 17CSE 373

16 32

0 1 2 3 4 5 6 7

16

32

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 18CSE 373

4 32 16

0 1 2 3 4 5 6 7

4

32 16

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 19CSE 373

4 32 16 67

0 1 2 3 4 5 6 7

4

32 16

67

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 20CSE 373

4 32 16 67 105

0 1 2 3 4 5 6 7

4

32 16

10567

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 21CSE 373

4 32 16 67 105 43

0 1 2 3 4 5 6 7

4

32 16

4310567

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 22CSE 373

2 32 4 67 105 43 16

0 1 2 3 4 5 6 7

2

32 4

164310567

Other operations

• decreaseKey: given pointer to object in priority queue (e.g., its

array index), lower its priority value by p

– Change priority and percolate up

• increaseKey: given pointer to object in priority queue (e.g., its

array index), raise its priority value by p

– Change priority and percolate down

• remove: given pointer to object in priority queue (e.g., its array

index), remove it from the queue

– decreaseKey with p = , then deleteMin

Running time for all these operations?

Spring 2015 23CSE 373

Build Heap

• Suppose you have n items to put in a new (empty) priority queue

– Call this operation buildHeap

• n inserts works

– Only choice if ADT doesn’t provide buildHeap explicitly

– O(n log n)

• Why would an ADT provide this unnecessary operation?

– Convenience

– Efficiency: an O(n) algorithm called Floyd’s Method

– Common issue in ADT design: how many specialized

operations

Spring 2015 24CSE 373

Floyd’s Method

1. Use n items to make any complete tree you want

– That is, put them in array indices 1,…,n

2. Treat it as a heap and fix the heap-order property

– Bottom-up: leaves are already in heap order, work up

toward the root one level at a time

Spring 2015 25CSE 373

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Example

• In tree form for readability

– Purple for node not less than

descendants

• heap-order problem

– Notice no leaves are purple

– Check/fix each non-leaf

bottom-up (6 steps here)

Spring 2015 26CSE 373

6718

92103

115

12

4

Example

Spring 2015 27CSE 373

6718

92103

115

12

4 6718

92103

115

12

4

Step 1

• Happens to already be less than children (er, child)

Example

Spring 2015 28CSE 373

6718

92103

115

12

4

Step 2

• Percolate down (notice that moves 1 up)

67108

9213

115

12

4

Example

Spring 2015 29CSE 373

Step 3

• Another nothing-to-do step

67108

9213

115

12

4 67108

9213

115

12

4

Example

Spring 2015 30CSE 373

Step 4

• Percolate down as necessary (steps 4a and 4b)

117108

9613

25

12

467108

9213

115

12

4

Example

Spring 2015 31CSE 373

Step 5

117108

9653

21

12

4117108

9613

25

12

4

Example

Spring 2015 32CSE 373

Step 6

117108

9654

23

1

12117108

9653

21

12

4

But is it right?

• “Seems to work”

– Let’s prove it restores the heap property (correctness)

– Then let’s prove its running time (efficiency)

Spring 2015 33CSE 373

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children

• True initially: If j > size/2, then j is a leaf

– Otherwise its left child would be at position > size

• True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property

for any descendants

So after the loop finishes, all nodes are less than their children

Spring 2015 34CSE 373

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Efficiency

Easy argument: buildHeap is O(n log n) where n is size

• size/2 loop iterations

• Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of

the algorithm…

Spring 2015 35CSE 373

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Efficiency

Better argument: buildHeap is O(n) where n is size

• size/2 total loop iterations: O(n)

• 1/2 the loop iterations percolate at most 1 step

• 1/4 the loop iterations percolate at most 2 steps

• 1/8 the loop iterations percolate at most 3 steps

• …

• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2 (page 4 of Weiss)

– So at most 2(size/2) total percolate steps: O(n)

Spring 2015 36CSE 373

void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}

Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their

own in O(n log n) worst case

• By providing a specialized operation internal to the data structure

(with access to the internal data), we can do O(n) worst case

– Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:

– Correctness:

• Non-trivial inductive proof using loop invariant

– Efficiency:

• First analysis easily proved it was O(n log n)

• Tighter analysis shows same algorithm is O(n)

Spring 2015 37CSE 373

Other branching factors

• d-heaps: have d children instead of 2

– Makes heaps shallower, useful for heaps too big for memory

(or cache)

• Homework: Implement a 3-heap

– Just have three children instead of 2

– Still use an array with all positions from 1…heap-size used

Spring 2015 38CSE 373

Index Children Indices

1 2,3,4

2 5,6,7

3 8,9,10

4 11,12,13

5 14,15,16

… …

