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Announcements

• Homework 3 is out and due Wednesday April 29th at 11pm

• Office Hours are updated - Check the website

• Lauren will be teaching next week while Catie is out of town
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Priority Queue ADT

• A priority queue holds compare-able items

• Each item in the priority queue has a “priority” and “data”

– In our examples, the lesser item is the one with the greater priority

– So “priority 1” is more important than “priority 4”

• Operations: 

– insert: adds an element to the priority queue

– deleteMin: returns and deletes the item with greatest priority

– is_empty

• Our data structure: A binary min-heap (or binary heap or heap) has:

– Structure property: A complete binary tree 

– Heap property: The priority of every (non-root) node is less important 

than the priority of its parent (Not a binary search tree)
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Operations: basic idea

• deleteMin: 

1. Remove root node

2. Move right-most node in last 

row to root to restore 

structure property

3. “Percolate down” to restore 

heap property

• insert:

1. Put new node in next position 

on bottom row to restore 

structure property

2. “Percolate up” to restore 

heap property
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Overall strategy:

• Preserve structure property

• Break and restore heap 

property
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DeleteMin

34

9857

106911

Delete (and later return) value at root node
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DeleteMin: Keep the Structure Property

• We now have a “hole” at the root

– Need to fill the hole with another value

• Keep structure property: When we are done, 

the tree will have one less node and must still 

be complete

• Pick the last node on the bottom row of the 

tree and move it to the “hole”
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DeleteMin: Restore the Heap Property

Percolate down: 

• Keep comparing priority of item with both children 

• If priority is less important, swap with the most important child and 

go down one level

• Done if both children are less important than the item or we’ve 

reached a leaf node
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Run time? 

Runtime is O(height of heap) 

Height of a complete binary tree of n nodes =  log2(n) 

O(log n)
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Insert

• Add a value to the tree

• Afterwards, structure and heap 

properties must still be correct
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Insert: Maintain the Structure Property

• There is only one valid tree shape after 

we add one more node

• So put our new data there and then 

focus on restoring the heap property
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Insert: Restore the heap property

2
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Percolate up:

• Put new data in new location

• If parent is less important, swap with parent, and continue

• Done if parent is more important than item or reached root
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2

What is the running time?
Like deleteMin, worst-case time proportional to tree height: O(log n)
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Array Representation of Binary Trees
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From node i:

left child: i*2

right child: i*2+1

parent: i/2

(wasting index 0 is 

convenient for the 

index arithmetic)
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implicit (array) implementation:
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Judging the array implementation

Plusses:

• Non-data space: just index 0 and unused space on right

– In conventional tree representation, one edge per node 

(except for root), so n-1 wasted space (like linked lists)

– Array would waste more space if tree were not complete

• Multiplying and dividing by 2 is very fast (shift operations in 

hardware)

• Last used position is just index size

Minuses:

• Same might-be-empty or might-get-full problems we saw with 

stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
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Pseudocode: insert into binary heap
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void insert(int val) {

if(size==arr.length-1)

resize();

size++;

i=percolateUp(size,val);

arr[i] = val;

}

int percolateUp(int hole, 
int val) {

while(hole > 1 &&
val < arr[hole/2])

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}
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This pseudocode uses ints.  In real use, 

you will have data nodes with priorities.



Pseudocode: deleteMin from binary heap

Spring 2015 14CSE 373

int deleteMin() {

if(isEmpty()) throw…

ans = arr[1];

hole = percolateDown

(1,arr[size]);

arr[hole] = arr[size];

size--;

return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole; 
right = left + 1;
if(right > size ||

arr[left] < arr[right])
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;
}
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Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin
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Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

Spring 2015 16CSE 373

16

0 1 2 3 4 5 6 7

16



Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin
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Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin
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Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin
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Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin
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Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin
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Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin
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Other operations

• decreaseKey: given pointer to object in priority queue (e.g., its 

array index), lower its priority value by p

– Change priority and percolate up

• increaseKey: given pointer to object in priority queue (e.g., its 

array index), raise its priority value by p

– Change priority and percolate down

• remove: given pointer to object in priority queue (e.g., its array 

index), remove it from the queue

– decreaseKey with p = , then deleteMin

Running time for all these operations?
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Build Heap

• Suppose you have n items to put in a new (empty) priority queue

– Call this operation buildHeap

• n inserts works

– Only choice if ADT doesn’t provide buildHeap explicitly

– O(n log n)

• Why would an ADT provide this unnecessary operation?

– Convenience

– Efficiency: an O(n) algorithm called Floyd’s Method

– Common issue in ADT design: how many specialized 

operations
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Floyd’s Method

1. Use n items to make any complete tree you want

– That is, put them in array indices 1,…,n

2. Treat it as a heap and fix the heap-order property

– Bottom-up: leaves are already in heap order, work up 

toward the root one level at a time
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void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}



Example

• In tree form for readability

– Purple for node not less than 

descendants 

• heap-order problem

– Notice no leaves are purple

– Check/fix each non-leaf 

bottom-up (6 steps here)
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Example
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Step 1

• Happens to already be less than children (er, child)



Example
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• Percolate down (notice that moves 1 up)
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Example
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Step 3

• Another nothing-to-do step
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Example
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Step 4

• Percolate down as necessary (steps 4a and 4b)
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Example
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Step 5
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Example
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But is it right?

• “Seems to work”

– Let’s prove it restores the heap property (correctness)

– Then let’s prove its running time (efficiency)
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void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}



Correctness

Loop Invariant: For all j>i, arr[j] is less than its children

• True initially: If j > size/2, then j is  a leaf

– Otherwise its left child would be at position > size

• True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property 

for any descendants

So after the loop finishes, all nodes are less than their children
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void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}



Efficiency

Easy argument:  buildHeap is O(n log n) where n is size

• size/2 loop iterations

• Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of 

the algorithm…
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void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}



Efficiency

Better argument:  buildHeap is O(n) where n is size

• size/2 total loop iterations: O(n)

• 1/2 the loop iterations percolate at most 1 step

• 1/4 the loop iterations percolate at most 2 steps

• 1/8 the loop iterations percolate at most 3 steps

• …

• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2  (page 4 of Weiss)

– So at most 2(size/2) total percolate steps: O(n) 
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void buildHeap() {

for(i = size/2; i>0; i--) {

val = arr[i];

hole = percolateDown(i,val);

arr[hole] = val;

}

}



Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their 

own in O(n log n) worst case

• By providing a specialized operation internal to the data structure 

(with access to the internal data), we can do O(n) worst case

– Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:

– Correctness: 

• Non-trivial inductive proof using loop invariant

– Efficiency:

• First analysis easily proved it was O(n log n)

• Tighter analysis shows same algorithm is O(n)
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Other branching factors

• d-heaps: have d children instead of 2

– Makes heaps shallower, useful for heaps too big for memory 

(or cache)

• Homework: Implement a 3-heap

– Just have three children instead of 2

– Still use an array with all positions from 1…heap-size used
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Index Children Indices

1 2,3,4

2 5,6,7

3 8,9,10

4 11,12,13

5 14,15,16

… …


